DOI QR코드

DOI QR Code

Rapid Surface Heating Promotes Laser Desorption Ionization of Thermally Labile Molecules from Surfaces

  • Received : 2016.12.03
  • Accepted : 2016.12.19
  • Published : 2016.12.30

Abstract

In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrix-assisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide ($WSi_x$). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.

Keywords

References

  1. Fenn J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64. https://doi.org/10.1126/science.2675315
  2. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun. Mass Spectrom. 1988, 2, 151. https://doi.org/10.1002/rcm.1290020802
  3. Karas, M.; Kruger, R. Chem. Rev. 2003, 103, 427. https://doi.org/10.1021/cr010376a
  4. Kim, J. Mass Spectrom. Lett. 2015, 6, 27. https://doi.org/10.5478/MSL.2015.6.2.27
  5. Robb, D. B.; Covey, T. R.; Bruins, A. P. Anal. Chem. 2000, 72, 3653. https://doi.org/10.1021/ac0001636
  6. Bruins, A. P. Mass Spectrom. Rev. 1991, 10, 53. https://doi.org/10.1002/mas.1280100104
  7. Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297. https://doi.org/10.1021/ac050162j
  8. Takats, Z.; Wiseman, J. M.; Gologan B.; Cooks R. G. Science 2004, 306, 471. https://doi.org/10.1126/science.1104404
  9. McDonnell L. A.; Heeren R. M. Mass Spectrom. Rev. 2007, 26, 606. https://doi.org/10.1002/mas.20124
  10. Buriak, J. M.; Wei, J.; Siuzdak, G. Nature 1999, 399, 243. https://doi.org/10.1038/20400
  11. Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Ya.; Zhabin, S.; Nikiforov, S. J. Chem. Phy. 2008, 128, 014711. https://doi.org/10.1063/1.2802304
  12. Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordstrom, A.; Siuzdak, G. Nature 2007, 449, 1033. https://doi.org/10.1038/nature06195
  13. Go, E. P.; Apon, J. V.; Luo, G.; Saghatelian, A.; Daniels, R. H.; Sahi, V.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G. Anal. Chem. 2005, 77, 1641. https://doi.org/10.1021/ac048460o
  14. Piret, G.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Boukherroub, R. Langmuir 2010, 26, 1354. https://doi.org/10.1021/la902266x
  15. Walker, B. N.; Razunguzwa, T.; Powell, M.; Knochenmuss, R.; Vertes, A. Angew. Chem. Int. Edit. 2009, 48, 1669. https://doi.org/10.1002/anie.200805114
  16. Walker, B. N.; Stolee, J. A.; Pickel, D. L.; Retterer, S. T.; Vertes, A. J. Phys. Chem. C 2010, 114, 4835.
  17. Peterson, D. S. Mass Spectrom. Rev. 2007, 26, 19. https://doi.org/10.1002/mas.20104
  18. Shin, W. J.; Shin, J. H.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2010, 21, 989. https://doi.org/10.1016/j.jasms.2010.01.030
  19. Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J. J. Chem. Phys. 2001, 115, 1891. https://doi.org/10.1063/1.1381531
  20. Luo, G.; Chen, Y.; Siuzdak, G.; Vertes, A. J. Phys. Chem. B 2005, 109, 24450. https://doi.org/10.1021/jp054311d
  21. Tanaka, K. Angew. Chem. Int. Edit. 2003, 42, 3860. https://doi.org/10.1002/anie.200300585
  22. Daves Jr., G. D. Accounts Chem. Res. 1979, 12, 359. https://doi.org/10.1021/ar50142a002
  23. Beuhler, R. J.; Flanigan, E.; Greene, L. J.; Friedman, L. J. Am. Chem. Soc. 1974, 96, 3990. https://doi.org/10.1021/ja00819a043
  24. Han, S. Y. Bull. Kor. Chem. Soc. 2015, 36, 1951. https://doi.org/10.1002/bkcs.10396
  25. Kim, S. H.; Lee, A.; Song, J. Y.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2012, 23, 935. https://doi.org/10.1007/s13361-012-0355-5
  26. Burgess Jr., D.; Stair, P.C.; Weitz, E. J. Vac. Sci. Technol. A 1986, 4, 1362. https://doi.org/10.1116/1.573571
  27. Collette, C.; Drahos, L.; Pauw, E. D.; Vekey, K. Rapid Commun. Mass Spectrom. 1998, 12, 1673. https://doi.org/10.1002/(SICI)1097-0231(19981130)12:22<1673::AID-RCM385>3.0.CO;2-A
  28. Luo, G.; Marginean, I.; Vertes, A. Anal. Chem. 2002, 74, 6185. https://doi.org/10.1021/ac020339z
  29. Stolee, J. A.; Chen, Y.; Vertes, A. J. Phys. Chem. C 2010, 114, 5574. https://doi.org/10.1021/jp906834z
  30. Chen, Y.; Vertes, A. Anal. Chem. 2006, 78, 5835. https://doi.org/10.1021/ac060405n
  31. Kim. S. H.; Park, S. H.; Song, J. Y.; Han, S. Y. Mass Spectrom. Lett. 2012, 3, 18. https://doi.org/10.5478/MSL.2012.3.1.018
  32. Kim, S. H.; Kim, J.; Moon, D. W.; Han, S. Y. J. Am. Soc. Mass Spectrom. 2013, 24, 167. https://doi.org/10.1007/s13361-012-0534-4
  33. Kim, S. H.; Shom, H. K.; Lee, T. G.; Han, S. Y. Surf. Interface. Anal. 2014, 46, 35. https://doi.org/10.1002/sia.5515