DOI QR코드

DOI QR Code

순환형 히스토그램 쉬프팅 기반 가역성 DNA 정보은닉 기법

Reversible DNA Information Hiding based on Circular Histogram Shifting

  • 이석환 (동명대학교 정보보호학과) ;
  • 권성근 (경일대학교, 전자공학과) ;
  • 권기룡 (부경대학교, IT융합응용공학과)
  • 투고 : 2016.08.09
  • 심사 : 2016.11.16
  • 발행 : 2016.12.25

초록

DNA 컴퓨팅 기술로 DNA 정보를 매개물로 하는 DNA 저장, DNA 스테가노그라픽, 및 DNA 워터마킹에 대한 관심이 많아지고 있다. 생물학적 변이없이 외부 워터마크를 DNA 정보 내에 은닉에서는 원본 DNA 서열의 복원이 가능하고, 은닉과 복원이 반복적으로 이루어지며, 외부 워터마크에 의한 의도적인 변이 분석이 가능한 가역성 정보은닉 기술이 필요하다. 본 논문에서는 DNA 부호계수의 순환형 히스토그램 다중 쉬프팅 (Circular Histogram Shifting, CHS) 기반으로 생물학적 변이없이 허위개시코돈 방지, 원본 서열 길이 유지, 높은 워터마크 용량성, 블라인드 검출이 가능한 가역성 DNA 정보은닉 방법을 제안한다. 제안한 방법은 비부호 영역 DNA 염기서열을 부호계수로 변환한 다음, 높은 용량성을 위하여 순환형 히스토그램 다중 쉬프팅에 의하여 부호계수에 다중비트를 은닉한다. 마지막으로 다중비트 은닉 과정에서 은닉된 인접 염기서열 간의 비교탐색을 통하여 허위개시코돈 생성을 방지한다. 실험 결과로부터 제안한 방법이 기존 방법보다 0.11~0.50 bpn(bit per nucleotide base) 높은 워터마크 용량성을 가지고, 허위개시코돈이 발생되지 않음을 확인하였다.

DNA computing technology makes the interests on DNA storage and DNA watermarking / steganography that use the DNA information as a newly medium. DNA watermarking that embeds the external watermark into DNA information without the biological mutation needs the reversibility for the perfect recovery of host DNA, the continuous embedding and detecting processing, and the mutation analysis by the watermark. In this paper, we propose a reversible DNA watermarking based on circular histogram shifting of DNA code values with the prevention of false start codon, the preservation of DNA sequence length, and the high watermark capacity, and the blind detection. Our method has the following features. The first is to encode nucleotide bases of 4-character variable to integer code values by code order. It makes the signal processing of DNA sequence easy. The second is to embed the multiple bits of watermark into -order coded value by using circular histogram shifting. The third is to check the possibility of false start codon in the inter or intra code values. Experimental results verified the our method has higher watermark capacity 0.11~0.50 bpn than conventional methods and also the false start codon has not happened in our method.

키워드

참고문헌

  1. G. M. Church, Y. Gao, S. Kosuri, "Nextgeneration digital information storage in DNA," Science, Vol. 337, No. 6102, pp. 1628, Sep. 2012. https://doi.org/10.1126/science.1226355
  2. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney, "Towards practical high-capacity, low-maintenance information storage in synthesized DNA, " Nature, Vol. 494, pp. 77-80, Feb. 2013. https://doi.org/10.1038/nature11875
  3. D. Heider and A. Barnekow, "DNA-based watermarks using the DNA-Crypt algorithm," BMC Bioinformatics, Vol. 8, No. 176, May 2007.
  4. M. Liss, D. Daubert, K. Brunner, K. Kliche, U. Hammes, A. Leiherer, and R. Wagner, "Embedding permanent watermarks in synthetic genes," PLOS ONE, Vol. 7, Issue 8, e42465, Aug. 2012. https://doi.org/10.1371/journal.pone.0042465
  5. S. H. Lee, "DWT based coding DNA watermarking for DNA copyright protection, " Information Sciences, Vol. 273, pp. 263-286, July, 2014. https://doi.org/10.1016/j.ins.2014.03.039
  6. S. H. Lee, "DNA sequence watermarking based on random circular angle, " Digital Signal Processing, Vol. 25, pp. 173-189, Feb. 2014. https://doi.org/10.1016/j.dsp.2013.11.010
  7. S.-H. Lee, K.-R. Kwon, and S.-G. Kwon, "A Robust DNA Watermarking in Lifting Based 1D DWT Domain, " Journal of the Institute of Electronics and Information Engineers, Vol. 49, No. 10, pp. 91-101, Oct. 2015. https://doi.org/10.5573/ieek.2012.49.10.091
  8. T. Chen, "A novel biology-based reversible data hiding fusion scheme," Frontiers in Algorithmics, Lecture Notes in Computer Science, Vol. 4613, pp 84-95, 2007.
  9. Y.-H. Huang, C.-C. Chang, and C.-Y. Wu, "A DNA-based data hiding technique with low modification rates," Multimedia Tools and Applications, Volume 70, Issue 3, pp 1439-1451, June 2014. https://doi.org/10.1007/s11042-012-1176-z
  10. G. Liu, H. Liu, and A. Kadir, "Hiding message into DNA sequence through DNA coding and chaotic map," Medical & Biological Engineering & Computing, vol. 52, issue 9, pp. 741-747, Sep. 2014. https://doi.org/10.1007/s11517-014-1177-3
  11. S.-H. Lee and K.-R. Kwon, "Consecutive difference expansion based reversible dna watermarking," Journal of the Institute of Electronics and Information Engineers, Vol. 52, No. 7, pp. 51-62, July 2015. https://doi.org/10.5573/ieie.2015.52.7.051
  12. S.-H. Lee, S.-G. Kwon, and K.-R. Kwon, "Least Square Prediction Error Expansion Based Reversible Watermarking for DNA Sequence, " Journal of the Institute of Electronics and Information Engineers, Vol. 52, No. 11, pp. 66-78, Nov. 2015. https://doi.org/10.5573/IEIE.2015.52.11.066
  13. D. M. Thodi et al. "Expansion embedding techniques for reversible watermarking, " IEEE Trans. on Image Processing, Vol. 16, No. 3, March 2007.