DOI QR코드

DOI QR Code

Adoption of Artificial Neural Network for Rest, Enhanced Postprocessing of Beats, and Initial Melody Processing for Automatic Composition System

자동작곡시스템에서 쉼표용 인공신경망 도입 및 개선된 박자후처리와 초기멜로디 처리

  • Received : 2016.10.21
  • Accepted : 2016.12.20
  • Published : 2016.12.31

Abstract

This paper proposes a new method to improve the three problems of existing automatic composition method using artificial neural networks. The first problem is that the existing beat post-processing to fit into music theories could not handle all the cases of occurring. The second one is that the pitch space generated by artificial neural networks is distorted because the rest is trained with the pitch on the same neural network with large values. The last problem is caused by the difference between the initial melody and beats given by user and those generated by an artificial neural network in the process of new composition. In order to treat these problems, we propose an enhanced post-processing of beats, initial melody processing, and adoption of artificial neural network for rest. It was found from experiments that the proposed methods totally resolved the three problems.

본 논문에서는 기존의 인공신경망을 이용한 자동작곡 방법에서 발생한 세 가지 문제점을 개선하는 새로운 방법을 제안한다. 첫 번째 문제는 인공신경망이 출력한 곡의 박자를 음악이론에 맞도록 후처리 하는 것에서 모든 경우를 처리하지 못하여 발생한 문제이다. 두 번째 문제는 음표를 학습하는 인공신경망에 음표와 구분되는 큰 값으로 쉼표를 같이 학습하다보니 음표공간이 왜곡되어 발생하는 문제이다. 마지막 문제는 새로운 곡 작곡 시 사용자가 작곡해서 넣어준 초기 멜로디와 박자가 인공신경망이 출력하는 나머지 멜로디와 박자와 어울리지 못하여 발생하는 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 개선된 박자 후처리 알고리즘과 초기 멜로디 처리 방법을 제안하였으며 쉼표용 인공신경망을 새로이 도입하였다. 실험결과 새로 제안한 방법이 기존의 방법에서 발생한 세 가지 문제점을 모두 해결하는 것으로 판명되었다.

Keywords

Acknowledgement

Supported by : Hansung University

References

  1. J. Cho, E. M. Ryu, J. Oh, and S. H. Jung, "Training Method of Artificial Neural Networks for Implementation of Automatic Composition Systems," KIPS Transactions on Software and Data Engineering, vol. 3, no. 8, pp. 315-320, Aug. 2014. https://doi.org/10.3745/KTSDE.2014.3.8.315
  2. J. Oh, J. Song, K. Kim, and S. H. Jung, "Automatic Composition Using Training Capability of Artificial Neural Networks and Chord Progression," Journal of Korea Multimedia Society, vol. 18, no. 11, pp. 1358-1366, Nov. 2015 https://doi.org/10.9717/kmms.2015.18.11.1358
  3. B. Johanson and R. Poli, "GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters" Proceedings of the Third Annual Conference, pp. 181-186, 1998.
  4. N. Tokui and H. Iba, "Music Composition with Interactive Evolutionary Computation," Proceedings of the Third International Conference on Generative Art, pp. 215-226, 2000.
  5. A. Santos, B. Arcay, J. Dorado, J. Romero, and J. Rodriguez, "Evolutionary Computation Systems for Musical Composition," Proceedings of the International Conference Acoustic and Music: Theory and Applications, pp. 97-102, 2000.
  6. C. Chen and R. Miikkulainen, "Creating Melodies with Evolving Recurrent Neural Networks," Proceedings of the 2001 International Joint Conference on Neural Networks, pp. 2241-2246, 2001.
  7. Debora C. Correa, Alexandre L. M. Levada, Jose H. Saito, and Joao F. Mari, "Neural network based systems for computer-aided musical composition: supervised x unsupervised learning," Proceeding SAC '08 Proceedings of the 2008 ACM symposium on Applied computing, pp. 1738-1742, 2008.
  8. T. Oliwa and M. Wagner, "Composing Music with Neural Networks and Probabilistic Finite-State Machines," Applications of Evolutionary Computing: EvoWorkshops 2008, pp. 503-508, 2008
  9. H. Kim, B. Kim, and B. Zhang, "Learning music and generation of crossover music using evolutionary hypernetworks," Proceedings of Korea Computer Congress 2009, pp. 134-138, 2009.
  10. G. Bickerman, S. Bosley, P. Swire, and Rober M. Keller, "Learning to Create Jazz Melodies Using Deep Belief Nets," Proceedings of the International Conference on Computational Creativity, pp. 228-237, 2010.
  11. Andr'es E. Coca, Roseli A. F. Romero, and Liang Zhao, "Generation of composed musical structures through recurrent neural networks based on chaotic inspiration," Proceedings of International Joint Conference on Neural Networks," pp. 3220-3226, 2011.
  12. J. D. Fernandez and F. Vico, "AI Methods in Algorithmic Composition: A Comprehensive Survey," Journal of Artificial Intelligence Research, vol. 48, pp. 513-582, 2013.
  13. J.-Y. Jo, Y.-H. Kim, M.-K. Lee, "Analysis of Composition Chord Based on Back-propagation Neural Network," Journal of Digital Contents Society, vol. 5, no. 3, pp. 245-249, Sep. 2004.

Cited by

  1. 계층적 인공신경망을 이용한 구성을 갖춘 곡의 자동생성 vol.18, pp.4, 2016, https://doi.org/10.9728/dcs.2017.18.4.641
  2. RNN Auto-Encoder의 시계열 임베딩을 이용한 자동작곡 vol.21, pp.8, 2016, https://doi.org/10.9717/kmms.2018.21.8.849