DOI QR코드

DOI QR Code

THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

  • Received : 2015.11.02
  • Published : 2016.11.30

Abstract

We study the characteristic Jacobi operator ${\ell}={\bar{R}({\cdot},{\xi}){\xi}$ (along the Reeb flow ${\xi}$) on the unit tangent sphere bundle $T_1M$ over a Riemannian manifold ($M^n$, g). We prove that if ${\ell}$ is pseudo-parallel, i.e., ${\bar{R}{\cdot}{\ell}=L{\mathcal{Q}}({\bar{g}},{\ell})$, by a non-positive function L, then M is locally flat. Moreover, when L is a constant and $n{\neq}16$, M is of constant curvature 0 or 1.

Keywords

References

  1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  2. E. Boeckx, J. T. Cho, and S. H. Chun, Flow-invariant structures on unit tangent bundles, Publ. Math. Debrecen 70 (2007), no. 1-2, 167-178.
  3. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), no. 3, 427-448.
  4. J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasg. Math. J. 45 (2003), no. 3, 475-492. https://doi.org/10.1017/S0017089503001393
  5. J. T. Cho and J.-I. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), no. 5, 913-932. https://doi.org/10.4134/JKMS.2005.42.5.913
  6. P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
  7. P. Gilkey, A. Swann, and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 183, 299-320. https://doi.org/10.1093/qmath/46.3.299
  8. A. Gray, Classification des varietes approximativement kahleriennes de courbure sectionelle holomorphe constante, J. Reine Angew. Math. 279 (1974), 797-800.
  9. O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
  10. Y. Nikolayevsky, Osserman manifolds of dimension 8, Manuscr. Math. 115 (2004), no. 1, 31-53. https://doi.org/10.1007/s00229-004-0480-y
  11. Y. Nikolayevsky, Osserman conjecture in dimension n ${\neq}$ 8, 16, Math. Ann. 331 (2005), no. 3, 505-522. https://doi.org/10.1007/s00208-004-0580-8
  12. Y. Nikolayevsky, On Osserman manifolds of dimension 16, Contemporary geometry and related topics, 379-398, Univ. Belgrade Fac. Math., Belgrade, 2006.
  13. L. Vanhecke and T. J. Willmore, Interactions of tubes and spheres, Math. Anal. 21 (1983), no. 1, 31-42.
  14. K. Yano and S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., 1973.