THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

Jong Taek Cho and Sun Hyang Chun

Abstract. We study the characteristic Jacobi operator \(\ell = \bar{R}(\cdot, \xi) \xi \) (along the Reeb flow \(\xi \)) on the unit tangent sphere bundle \(T_1M \) over a Riemannian manifold \((M^n, g) \). We prove that if \(\ell \) is pseudo-parallel, i.e., \(\bar{R} \cdot \ell = LQ(\bar{g}, \ell) \), by a non-positive function \(L \), then \(M \) is locally flat. Moreover, when \(L \) is a constant and \(n \neq 16 \), \(M \) is of constant curvature 0 or 1.

1. Introduction

It is intriguing to study the interplay between Riemannian manifolds and their unit tangent sphere bundles. In particular, we are interested in the standard contact metric structure \((\eta, \bar{g}, \phi, \xi) \) of a unit tangent sphere bundle \(T_1M \) over a given Riemannian manifold \((M, g) \). It is remarkable that the characteristic vector field \(\xi \) on \(T_1M \) contains a crucial information about \(M \). In fact, all the geodesics in \(M \) are controlled by the geodesic flow on \(T_1M \) which is precisely given by \(\xi \). Apart from the defining structure tensors \(\eta, \bar{g}, \phi \) and \(\xi \), the so-called characteristic Jacobi operator \(\ell = \bar{R}(\cdot, \xi) \xi \) plays a fundamental role in contact Riemannian geometry, especially in the unit tangent sphere bundle (cf. [2]). Here, \(\bar{R} \) denotes the Riemannian curvature tensor determined by \(\bar{g} \). In Section 3, we prove that the characteristic Jacobi operator \(\ell \) vanishes if and only if \(M \) is locally flat (Proposition 2).

On the other hand, for a Riemannian manifold \((\bar{M}, \bar{g}) \) a tensor field \(F \) of type \((1,3)\);

\[F : \mathfrak{X}(\bar{M}) \times \mathfrak{X}(\bar{M}) \times \mathfrak{X}(\bar{M}) \to \mathfrak{X}(\bar{M}) \]

is said to be curvature-like provided that \(F \) has the symmetric properties of \(\bar{R} \). Here \(\mathfrak{X}(\bar{M}) \) is the Lie algebra of all vector fields on \(\bar{M} \). For example,
\((\bar{X} \wedge \bar{Y}) \bar{Z} = \bar{g}(\bar{Y}, \bar{Z})\bar{X} - \bar{g}(\bar{Z}, \bar{X})\bar{Y}, \ \bar{X}, \bar{Y}, \bar{Z} \in \mathfrak{X}(\bar{M}), \) defines a curvature-like tensor field on \(\bar{M}. \) Note that a Riemannian manifold \((\bar{M}, \bar{g})\) of constant curvature \(c \) satisfies the formula \(\bar{R}(\bar{X}, \bar{Y}) = c(\bar{X} \wedge \bar{Y}). \)

As is well-known, a curvature-like tensor field \(F \) acts on the algebra \(\mathcal{T}^1_1(\bar{M}) \) of all tensor fields on \(\bar{M} \) of type \((1, s)\) as a derivation (cf. [5]). Then \(P \) is said to be semi-parallel if \(\bar{R} \cdot P = 0, \) where \(\cdot \) means that \(\bar{R} \) acts as a derivation on \(P. \) Pseudo-parallelism is defined as the natural generalization. Namely, \(P \) is said to be pseudo-parallel if \(\bar{R} \cdot P = L \mathcal{Q}(\bar{g}, P) \) for some function \(L, \) where \(\mathcal{Q}(\bar{g}, P) \) is defined by

\[
\mathcal{Q}(\bar{g}, P)(X_1, \ldots, X_s; Y, X) = (X \wedge Y)P(X_1, \ldots, X_s) - \sum_{j=1}^s P(X_1, \ldots, (X \wedge Y)X_j, \ldots, X_s).
\]

In the present paper, we study pseudo-parallelism of the characteristic Jacobi operator \(\ell \) on the unit tangent sphere bundle \(T_1 \bar{M}: \bar{R} \cdot \ell = L \mathcal{Q}(\bar{g}, \ell) \) for a function \(L \) on \(T_1 \bar{M}. \) Then we easily see that vanishing \(\ell \) implies pseudo-parallel \(\ell. \) Moreover, pseudo-parallel \(\ell \) includes the case of semi-parallel \(\ell \) \((L = 0)\). The main purpose of the present paper is to prove the following.

Main Theorem. Let \((\bar{M}, \bar{g})\) be an \(n \)-dimensional Riemannian manifold and \(T_1 \bar{M} \) be the unit tangent sphere bundle over \(\bar{M} \) with the standard contact metric structure \((\eta, \bar{g}, \phi, \xi). \) Suppose that the characteristic Jacobi operator \(\ell \) of \(T_1 \bar{M} \) is pseudo-parallel by a function \(L \) on \(T_1 \bar{M}. \) Then we have the following results:

(i) if \(L \leq 0, \) then \(\bar{M} \) is locally flat,

(ii) if \(L \) is constant and \(n \neq 16, \) then \(\bar{M} \) is of constant curvature 0 or 1.

Conversely, for the unit tangent sphere bundle over a space of constant curvature \(c = 0 \) or \(c = 1, \) the characteristic Jacobi operator \(\ell \) is pseudo-parallel with \(L = 0 \) or \(L = 1, \) respectively.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class \(C^\infty. \) We start by collecting some fundamental material about contact metric geometry. We refer to [1] for further details. A \((2n + 1)\)-dimensional manifold \(\bar{M}^{2n+1} \) is said to be a contact manifold if it admits a global 1-form \(\eta \) such that \(\eta \wedge (d\eta)^n \neq 0 \) everywhere. Given a contact form \(\eta, \) we have a unique vector field \(\xi, \) the characteristic vector field, satisfying \(\eta(\xi) = 1 \) and \(d\eta(\xi, X) = 0 \) for any vector field \(X \) on \(\bar{M}. \) It is well-known that there exists a Riemannian metric \(\bar{g} \) on \(\bar{M} \) and a \((1, 1)\)-tensor field \(\phi \) such that

\[
(1) \quad \eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \phi Y), \quad \phi^2 X = -X + \eta(X)\xi,
\]

where \(\bar{X} \) and \(\bar{Y} \) are vector fields on \(\bar{M}. \) From (1) it follows that

\[
(2) \quad \phi\xi = 0, \quad \eta \circ \phi = 0, \quad g(\phi \bar{X}, \phi \bar{Y}) = \bar{g}(\bar{X}, \bar{Y}) - \eta(\bar{X})\eta(\bar{Y}).
\]
A Riemannian manifold \(\bar{M} \) equipped with structure tensors \((\eta, \bar{g}, \phi, \xi) \) satisfying (1) is said to be a contact metric manifold and is denoted by \(\bar{M} = (\bar{M}; \eta, \bar{g}, \phi, \xi) \). Given a contact metric manifold \(\bar{M} \), we define the structural operator \(h \) by
\[
h = \frac{1}{2} \xi \phi,
\]
where \(\xi \) denotes Lie differentiation. Then we may observe that \(h \) is symmetric and satisfies
\[
(3) \quad h \xi = 0 \quad \text{and} \quad h \phi = -\phi h,
\]
(4) \(\bar{\nabla}_X \xi = -\phi X - \phi h X \),
where \(\bar{\nabla} \) is the Levi-Civita connection. From (3) and (4) we see that each trajectory of \(\xi \) is a geodesic. We denote by \(\bar{R} \) the Riemannian curvature tensor defined by
\[
\bar{R}(\bar{X}, \bar{Y}) \bar{Z} = \bar{\nabla}_X (\bar{\nabla}_Y \bar{Z}) - \bar{\nabla}_Y (\bar{\nabla}_X \bar{Z}) - \bar{\nabla}_{[X,Y]} \bar{Z}
\]
for all vector fields \(\bar{X}, \bar{Y} \) and \(\bar{Z} \). Along a trajectory of \(\xi \), the Jacobi operator \(\ell = \bar{R}(\cdot, \xi) \xi \) is a symmetric \((1,1)\)-tensor field. We call it the characteristic Jacobi operator. A contact metric manifold for which \(\xi \) is Killing is called a \(K \)-contact manifold.

Proposition 1. For a Sasakian manifold, the characteristic Jacobi operator \(\ell \) is pseudo-parallel with \(L = 1 \).

Proof. Let \(\bar{M} = (\bar{M}; \eta, \bar{g}, \phi, \xi) \) be a Sasakian manifold. Then, from (5) we get
\[
(6) \quad \ell \bar{X} = \bar{X} - \eta(\bar{X}) \xi
\]
for any vector field \(\bar{X} \) on \(\bar{M} \). Using (6) we compute
\[
(\bar{R}(\bar{X}, \bar{Y}) \cdot \ell) \bar{Z} = \bar{R}(\bar{X}, \bar{Y}) \ell \bar{Z} - \ell(\bar{R}(\bar{X}, \bar{Y}) \bar{Z})
\]
\[
= \eta(\bar{X}) \bar{g}(\bar{Y}, \bar{Z}) \xi - \eta(\bar{Y}) \bar{g}(\bar{X}, \bar{Z}) \xi + \eta(\bar{X}) \eta(\bar{Z}) \bar{Y} - \eta(\bar{Y}) \eta(\bar{Z}) \bar{X},
\]
where \(\bar{\nabla} \) is the Levi-Civita connection. From (3) and (4) we see that each trajectory of \(\xi \) is a geodesic. We denote by \(\bar{R} \) the Riemannian curvature tensor defined by
\[
\bar{R}(\bar{X}, \bar{Y}) \bar{Z} = \bar{\nabla}_X (\bar{\nabla}_Y \bar{Z}) - \bar{\nabla}_Y (\bar{\nabla}_X \bar{Z}) - \bar{\nabla}_{[X,Y]} \bar{Z}
\]
for all vector fields \(\bar{X}, \bar{Y} \) and \(\bar{Z} \). Along a trajectory of \(\xi \), the Jacobi operator \(\ell = \bar{R}(\cdot, \xi) \xi \) is a symmetric \((1,1)\)-tensor field. We call it the characteristic Jacobi operator. A contact metric manifold for which \(\xi \) is Killing is called a \(K \)-contact manifold.

Proposition 1. For a Sasakian manifold, the characteristic Jacobi operator \(\ell \) is pseudo-parallel with \(L = 1 \).

Proof. Let \(\bar{M} = (\bar{M}; \eta, \bar{g}, \phi, \xi) \) be a Sasakian manifold. Then, from (5) we get
\[
(6) \quad \ell \bar{X} = \bar{X} - \eta(\bar{X}) \xi
\]
for any vector field \(\bar{X} \) on \(\bar{M} \). Using (6) we compute
\[
(\bar{R}(\bar{X}, \bar{Y}) \cdot \ell) \bar{Z} = \bar{R}(\bar{X}, \bar{Y}) \ell \bar{Z} - \ell(\bar{R}(\bar{X}, \bar{Y}) \bar{Z})
\]
\[
= \eta(\bar{X}) \bar{g}(\bar{Y}, \bar{Z}) \xi - \eta(\bar{Y}) \bar{g}(\bar{X}, \bar{Z}) \xi + \eta(\bar{X}) \eta(\bar{Z}) \bar{Y} - \eta(\bar{Y}) \eta(\bar{Z}) \bar{X},
\]
\[
L((\bar{X} \wedge \bar{Y}) \cdot \ell) \bar{Z} \\
= L\{\bar{X} \wedge \bar{Y})\ell \bar{Z} - \ell((\bar{X} \wedge \bar{Y})\bar{Z})\} \\
= L\{\eta(\bar{Y}) \bar{g}(\bar{Z}, \bar{X})\xi - \eta(\bar{Y})\bar{g}(\bar{X}, \bar{Z})\xi + \eta(\bar{X})\eta(\bar{Z})\bar{Y} - \eta(\bar{Y})\eta(\bar{Z})\bar{X}\}.
\]

Then from (7) and (8), we can see that \(\ell \) is pseudo-parallel and \(L = 1 \). \(\square \)

3. The contact metric structure of the unit tangent sphere bundle

The basic facts and fundamental formulae about tangent bundles are well-known (cf. [6], [9], [14]). We only briefly review some notations and definitions. Let \(M = (M, g) \) be an \(n \)-dimensional Riemannian manifold and let \(TM \) denote its tangent bundle with the projection \(\pi : TM \to M, \pi(p, u) = p \). For a vector field \(X \) on \(M \), its \emph{vertical lift} \(X^v \) on \(TM \) is the vector field defined by \(X^v = \omega(X) \cdot \pi \), where \(\omega \) is a 1-form on \(M \). For the Levi Civita connection \(\nabla \) on \(M \), the \emph{horizontal lift} \(X^h \) of \(X \) is defined by \(X^h = \nabla_X \omega \). The tangent bundle \(TM \) can be endowed in a natural way with a Riemannian metric \(\bar{g} \), the so-called \emph{Sasaki metric}, depending only on the Riemannian metric \(g \) on \(M \). It is determined by

\[
\bar{g}(X^h, Y^h) = \bar{g}(X^v, Y^v) = g(X, Y) \circ \pi, \quad \bar{g}(X^h, Y^v) = 0
\]

for all vector fields \(X \) and \(Y \) on \(M \). Also, \(TM \) admits an almost complex structure tensor \(J \) defined by \(JX^h = X^v \) and \(JX^v = -X^h \). Then \(\bar{g} \) is a Hermitian metric for the almost complex structure \(J \).

The unit tangent sphere bundle \(\bar{\pi} : T_1M \to M \) is a hypersurface of \(TM \) given by \(g_p(u, u) = 1 \). Note that \(\bar{\pi} = \pi \circ i \), where \(i \) is the immersion of \(T_1M \) into \(TM \). A unit normal vector field \(N = u^v \) to \(T_1M \) is given by the vertical lift of \(u \) for \((p, u) \). The horizontal lift of a vector is tangent to \(T_1M \), but the vertical lift of a vector is not tangent to \(T_1M \) in general. So, we define the \emph{tangential lift} of \(X \) to \((p, u) \in T_1M \) by

\[
X^t_{(p, u)} = (X - g(X, u)u)^v.
\]

Clearly, the tangent space \(T_{(p, u)}T_1M \) is spanned by vectors of the form \(X^h \) and \(X^v \), where \(X \in T_pM \).

We now define the standard contact metric structure of the unit tangent sphere bundle \(T_1M \) over a Riemannian manifold \((M, g) \). The metric \(g' \) on \(T_1M \) is induced from the Sasaki metric \(\bar{g} \) on \(TM \). Using the almost complex structure \(J \) on \(TM \), we define a unit vector field \(\xi' \), a 1-form \(\eta' \) and a \((1,1)\)-tensor field \(\phi' \) on \(T_1M \) by

\[
\xi' = -JN, \quad \phi' = J - \eta' \otimes N.
\]

Since \(g'(\bar{X}, \phi' \bar{Y}) = 2d\eta'(\bar{X}, \bar{Y}), (\eta', g', \phi', \xi') \) is not a contact metric structure. If we rescale this structure by

\[
\xi = 2\xi', \quad \eta = \frac{1}{2} \eta', \quad \phi = \phi', \quad \bar{g} = \frac{1}{4} g',
\]

we obtain a contact metric structure on \(T_1M \).
we get the standard contact metric structure \((\eta, \bar{g}, \phi, \xi)\). The tensors \(\xi\) and \(\phi\) are explicitly given by

\[(9) \quad \xi = 2u^h, \quad \phi X^t = -X^h + \frac{1}{2} g(X, u) \xi, \quad \phi X^t = X^t,\]

where \(X\) and \(Y\) are vector fields on \(M\).

From now on, we consider \(T_1 M = (T_1 M; \eta, \bar{g}, \phi, \xi)\) with the standard contact metric structure. Then the Levi-Civita connection \(\bar{\nabla}\) of \(T_1 M\) is described by

\[(10) \quad \bar{\nabla}_X Y^t = -g(Y, u) X^t,\]

\[\bar{\nabla}_X Y^h = \frac{1}{2} (R(u, X) Y)^h,\]

\[\bar{\nabla}_X Y^t = (\nabla X Y)^t + \frac{1}{2} (R(u, Y) X)^h,\]

\[\bar{\nabla}_X Y^h = (\nabla X Y)^h - \frac{1}{2} (R(X, Y) u)^t\]

for all vector fields \(X\) and \(Y\) on \(M\).

Also the Riemann curvature tensor \(\bar{R}\) of \(T_1 M\) is given by

\[(11) \quad \bar{R}(X^t, Y^t) Z^t = -(g(X, Z) - g(X, u)g(Z, u)) Y^t + (g(Y, Z) - g(Y, u)g(Z, u)) X^t,\]

\[\bar{R}(X^t, Y^t) Z^h = \left\{ R(X - g(X, u) Y - g(Y, u)u Z)^h \right\}
+ \frac{1}{4} \left\{ R(u, X) (R(u, Y) Z)^h \right\},\]

\[\bar{R}(X^h, Y^t) Z^t = -\frac{1}{2} \left\{ R(Y - g(Y, u) Z - g(Z, u)u X)^h \right\}
- \frac{1}{4} \left\{ R(u, Y) (R(u, Z) X)^h \right\},\]

\[\bar{R}(X^h, Y^t) Z^h = \frac{1}{2} \left\{ R(X, Y) (Y - g(Y, u) u) Z^h \right\}
- \frac{1}{4} \left\{ R(X, R(u, Y) Z) u Z^h \right\} + \frac{1}{2} \left\{ (\nabla X R)(u, Y) Z^h \right\},\]

\[\bar{R}(X^h, Y^h) Z^t = \left\{ R(X, Y) (Z - g(Z, u) u) Z^t \right\} + \frac{1}{4} \left\{ R(Y, R(u, Z) X) u - R(X, R(u, Z) Y) u^t \right\}
+ \frac{1}{2} \left\{ (\nabla X R)(u, Z) Y - (\nabla Y R)(u, Z) X^h \right\},\]

\[\bar{R}(X^h, Y^h) Z^h = (R(X, Y) Z)^h + \frac{1}{2} \left\{ R(u, R(X, Y) u) Z^h \right\}
- \frac{1}{4} \left\{ R(u, R(Y, Z) u) X - R(u, R(X, Z) u) Y^h \right\}
+ \frac{1}{2} \left\{ (\nabla Z R)(X, Y) u \right\}^t\]
for all vector fields X, Y and Z on M. Using the formulae (11), we get

$$
\ell X^i = (R_u^2 X)^i + 2(R_u X)^b_i,
$$
(12)

$$
\ell X^b = 4(R_u X)^b - 3(R_u^2 X)^h + 2(R_u X)^i,
$$

where $R_u = R(\cdot, u)u$, $R_u^a = (\nabla_u R)(\cdot, u)u$ and $R_u^2 = R(R(\cdot, u)u, u)u$. We can refer to [2, 3, 4] for the formulas (10) ~ (12). From (12), we have the following proposition.

Proposition 2. The characteristic Jacobi operator ℓ of T_1M vanishes if and only if M is locally flat.

Proof. Suppose that the characteristic Jacobi operator ℓ vanishes. Then we get from (12) $R_u^a X = 0$ and $R_u^2 X = 0$. The former implies that (M, G) is a locally symmetric space ([8], [13]) and the latter does that the eigenvalues of R_u are constant and equal to 0, i.e., (M, G) is a globally Osserman space (i.e., the eigenvalues of R_u do not depend on the point p and not on the choice of unit vector u at p). However, a locally symmetric globally Osserman space is locally flat or locally isometric to a rank one symmetric space ([7]). Therefore, we conclude that M is a space of constant curvature 0. \[\Box\]

4. Proof of Main Theorem

Suppose that the characteristic Jacobi operator ℓ of T_1M is pseudo-parallel by a function L on T_1M. Then T_1M satisfies

$$
\bar{R}(X, Y)\ell Z - \ell(\bar{R}(X, Y)Z)
$$
(13)

$$
= L(\bar{g}(Y, \ell Z)X - \bar{g}(X, \ell Z)Y - \bar{g}(\bar{Y}, \bar{Z})\ell X + \bar{g}(\bar{X}, \bar{Z})\ell Y).
$$

We put $\bar{Y} = \xi$ in (13). Then we have

$$
\bar{R}(X, \xi)\ell Z - \ell(\bar{R}(X, \xi)Z) = L(-\bar{g}(\bar{X}, \ell Z)\xi - \eta(\bar{Z})\ell X).
$$

(14)

Setting $X = X^t$, $Z = Z^t$ in (14), and applying the Riemannian metric \bar{g} on T_1M for Y^h on both sides, then we have the following equation:

$$
-\frac{1}{2}g(R(X, R_u^2 Z)u, Y) + \frac{1}{2}g(X, u)g(R_u^4 Z, Y) + \frac{1}{4}g(R(X, u)R_u^4 Z, Y)
$$

$$
- g((\nabla_u R)(u, X)R_u^4 Z, Y) = -\frac{1}{4}Lg(X, R_u^2 Z)g(Y, u).
$$

(15)

We put $Y = u$ in (15). Then we have

$$
g(-\frac{1}{4}R_u^4 X - R_u^2 X, Z) = -\frac{1}{4}Lg(R_u^2 X, Z)
$$

for any vector fields X and Z on M, that is, it holds

$$
R_u^4 X + 4R_u^2 X = LR_u^2 X.
$$

(16)

Since R_u is symmetric operator, if $L \leq 0$, from (16) we have $R_u^4 = 0$ and $R_u = 0$. Therefore, using the similar arguments in the proof of Proposition 2 we see that M is locally flat. This completes the proof of (i).
Next, in order to prove the second part of Main Theorem we prepare the following lemma.

Lemma 3. Let \((M, g)\) be a locally symmetric space. Then the characteristic Jacobi operator \(\ell\) of \(T_1M\) is pseudo-parallel by a function \(L\) on \(T_1M\) if and only if \(M\) is of constant curvature 0 or 1.

Proof. If we set \(\bar{X} = X^h\), \(\bar{Z} = Z^h\) in (14), and apply the Riemannian metric \(\bar{g}\) on \(T_1M\) for \(Y^h\) on both sides, then we have the following equation:

\[(17)\]
\[
4g(R(X, u)R_uZ, Y) + 2g(R(u, R_uX)R_uZ, Y) - g(R(R_u^2Z, u)X, Y)
- g(R(X, R_uZ)u, R_uY) - 3g(R(X, u)R_u^2Z, Y) - \frac{3}{2}g(R(u, R_uX)R_u^2Z, Y)
+ \frac{3}{4}g(R(R_u^2Z, u)X, Y) - \frac{3}{4}g(R(R_u^2Z, X)u, R_uY) + g((\nabla X R)(u, R_u'Z)u, Y)
- g(((\nabla u) R)(u, R_u'Z)X, Y) - 4g(R(X, u)Z, R_uY) + 3g(R(X, u)Z, R_u^2Y)
- 2g(R(u, R_uX)Z, R_uY) + \frac{3}{2}g(R(u, R_uX)Z, R_u^2Y) + g(R(R_uZ, u)X, R_uY)
- \frac{3}{4}g(R(R_uZ, u)X, R_u^2Y) + g(R(X, Z)u, R_u^2Y) - \frac{3}{4}g(R(X, Z)u, R_u^2Y)
- g((\nabla Z R)(X, u)u, R_u^2Y)
= \frac{1}{4}L(-4g(X, R_uZ)g(Y, u) + 3g(X, R_u^2Z)g(Y, u) - 4g(R_uX, Y)g(Z, u)
+ 3g(R_u^2X, Y)g(Z, u))\]

Putting \(Y = u\) in (17), we have

\[(18)\]
\[-\frac{9}{4}R_u^4X + 6R_u^3X - 4R_u^2X - R_u'^2X = 4L(-4R_uX + 3R_u^2X)\]

We suppose that \(M\) is locally symmetric. Then from (16) and (18), we obtain

\[(19)\]
\[R_u^4X = LR_u^2X,\]

\[(20)\]
\[-9R_u^4X + 24R_u^3X - 16R_u^2X = L(-4R_uX + 3R_u^2X)\]

We assume that \(R_uX = \lambda X\) for a function \(\lambda\) on \(M\). Then from (19) and (20), we have

\[(21)\]
\[\lambda^4 = L\lambda^2,\]

\[(22)\]
\[9\lambda^4 - 24\lambda^3 + 16\lambda^2 - 4L\lambda + 3L\lambda^2 = 0.\]

From (21), we have \(\lambda = 0\) or \(L = \lambda^2\). If \(L = \lambda^2\) and \(\lambda \neq 0\), from (22), we have

\[(3\lambda - 4)(\lambda - 1) = 0.\]

Hence, \(\lambda = 0, 1\) or \(\frac{4}{3}\), and then \((M, g)\) is a globally Osserman space. But, it is also locally symmetric, and then it is locally isometric to a rank one symmetric space. However, we can easily check that \(T_1M\) of a space of constant curvature
does not satisfy pseudo-parallelism of ℓ. Therefore, we conclude that (M, g) is of constant curvature 0 or 1. By Propositions 1 and 2, the converse is easily proved. □

Now we assume that L is constant. Then, from (16) and (18), we have

$$2R_a^4X - 6R_a^3X + 4R_a^2X = L(R_aX - R_a^2X).$$

If we put $R_aX = \lambda X$, we get

$$\lambda(\lambda - 1)(2\lambda^2 - 4\lambda + L) = 0.$$

Here, we use Nikolayevsky’s results ([10, 11, 12]) on the Osserman conjecture. Then we find that (M^n, g) is locally isometric to a rank one symmetric space, when $n \neq 16$. Thus, by Lemma 3 we conclude that (M, g) is of constant curvature 0 or 1, when $n \neq 16$. Conversely, by Propositions 1 and 2, we see that for the unit tangent sphere bundle over a space of constant curvature $c = 0$ or $c = 1$, the characteristic Jacobi operator ℓ is pseudo-parallel with $L = 0$ or $L = 1$, respectively. This completes the proof of Main Theorem.

Corollary 4. If ℓ of T_1M is semi-parallel, that is, $L = 0$, then M is locally flat.

References

Jong Taek Cho
Department of Mathematics
Chonnam National University
Gwangju 61186, Korea
E-mail address: jtcho@chonnam.ac.kr

Sun Hyang Chun
Department of Mathematics
Chosun University
Gwangju 61452, Korea
E-mail address: shchun@chosun.ac.kr