DOI QR코드

DOI QR Code

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho (Department of Mathematics Education Sangmyung University) ;
  • Park, Kisoeb (Department of Mathematics Incheon National University)
  • Received : 2015.12.04
  • Published : 2016.11.30

Abstract

In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

Keywords

References

  1. A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), no. 4, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  2. S. Aouaoui, On some degenerate quasilinear equations involving variable exponents, Nonlinear Anal. 75 (2012), no. 4, 1843-1858. https://doi.org/10.1016/j.na.2011.09.035
  3. D. Arcoya and J. Carmona, A nondifferentiable extension of a theorem of Pucci and Serrin and applications, J. Differential Equations 235 (2007), no. 2, 683-700. https://doi.org/10.1016/j.jde.2006.11.022
  4. J.-H. Bae, Y.-H. Kim, and C. Zhang, Multiple solutions for the equations involving nonhomogeneous operators of p(x)-Laplace type in ${\mathbb{R}}^N$, submitted.
  5. M. S. Berger, Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis, Academic Press, 1977.
  6. G. Bonanno and A. Chinni, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418 (2014), no. 2, 812-827. https://doi.org/10.1016/j.jmaa.2014.04.016
  7. M.-M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differential Equations Appl. 19 (2012), no. 2, 235-251. https://doi.org/10.1007/s00030-011-0126-1
  8. M.-M. Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with p(${\cdot}$)-growth conditions, Nonlinear Anal. Real World Appl. 14 (2013), no. 4, 1829-1844. https://doi.org/10.1016/j.nonrwa.2012.12.001
  9. F. Colasuonno, P. Pucci, and C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators, Nonlinear Anal. 75 (2012), no. 12, 4496-4512. https://doi.org/10.1016/j.na.2011.09.048
  10. D. E. Edmunds and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000), no. 3, 267-293. https://doi.org/10.4064/sm-143-3-267-293
  11. X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl. 339 (2008), no. 2, 1395-1412. https://doi.org/10.1016/j.jmaa.2007.08.003
  12. X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618
  13. X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  14. X. Fan, Q. Zhang, and D. Zhao, Eigenvalue of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
  15. X. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
  16. V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal. 71 (2009), no. 7-8, 3305-3321. https://doi.org/10.1016/j.na.2009.01.211
  17. S. D. Lee, K. Park, and Y.-H. Kim, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p(x)-Laplace type in ${\mathbb{R}}^N$, Bound. Value Probl. 261 (2014), 1-17.
  18. J. Liu and X. Shi, Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x), q(x))-Laplacian, Nonlinear Anal. 71 (2009), no. 1-2, 550-557. https://doi.org/10.1016/j.na.2008.10.094
  19. O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), no. 4, 592-618.
  20. K. R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001), no. 1, 59-78. https://doi.org/10.1007/s001610100034
  21. B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000), no. 11-13, 1485-1494. https://doi.org/10.1016/S0895-7177(00)00220-X
  22. B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226. https://doi.org/10.1007/s000130050496
  23. B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), no. 9, 3084-3089. https://doi.org/10.1016/j.na.2008.04.010
  24. B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009), no. 9, 4151-4157. https://doi.org/10.1016/j.na.2009.02.074
  25. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000.
  26. I. Sim and Y.-H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete Contin. Dyn. Syst. Supplement 2013 (2013), 695-707.
  27. P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal. 12 (2013), no. 2, 785-802. https://doi.org/10.3934/cpaa.2013.12.785
  28. J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008), no. 5, 1271-1283. https://doi.org/10.1016/j.na.2006.12.020
  29. E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer, New York, 1985.
  30. E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer, New York, 1990.
  31. J.-H. Zhao and P.-H. Zhao, Existence of infinitely many weak solutions for the p-Laplacian with nonlinear boundary conditions, Nonlinear Anal. 69 (2008), no. 4, 1343-1355. https://doi.org/10.1016/j.na.2007.06.036