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Abstract
The goal of this study was to analyze landslide susceptibility using two different models and compare the 

results. For this purpose, a landslide inventory map was produced from a field survey, and the inventory was 
divided into two groups for training and validation, respectively. Sixteen landslide conditioning factors were 
considered. The relationships between landslide occurrence and landslide conditioning factors were analyzed 
using the FR (Frequency Ratio) and EBF (Evidential Belief Function) models. The LSI (Landslide Susceptibility 
Index) maps that were produced were validated using the ROC (Relative Operating Characteristics) curve and 
the SCAI (Seed Cell Area Index). The AUC (Area under the ROC Curve) values of the FR and EBF LSI maps 
were 80.6% and 79.5%, with prediction accuracies of 72.7% and 71.8%, respectively. Additionally, in the low and 
very low susceptibility zones, the FR LSI map had higher SCAI values compared to the EBF LSI map, as high 
as 0.47%p. These results indicate that both models were reasonably accurate, however that the FR LSI map had a 
slightly higher accuracy for landslide susceptibility mapping in the study area. 
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1. Introduction

Landslides, defined as the movement of a mass of rock 
or debris, are significant natural hazards. They are caused 
by various causes, including rainfall, bedrock conditions, 
vegetation surcharge, groundwater, and human activities 
(Cruden, 1991; Gerath et al., 1997). Each year, landslides 
cause casualties and economic losses amounting to more 
than 100,000 deaths and injuries and more than one billion 
USD (Schuster, 1996). In Korea, approximately 70% of the 

land is mountainous, consisting mainly of granite gneiss. It 
rains frequently in the region, and typhoons also bring strong 
winds and heavy rains during the rainy season. Under these 
circumstances, landslide occurrences have recently become 
larger and more frequent (KOSIS, 2016).

Landslide susceptibility mapping has become an essential 
part of the strategies applied to mitigate and manage 
landslide hazards efficiently and effectively. To illustrate 
for planners which sites (either rural or urban) are suitable 
for development, maps of susceptibility to landslides divide 
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areas of land into sections, differentiated by the degree 
(potential or actual) to which they constitute a landslide 
hazard (Pourghasemi et al., 2013). In recent years, various 
models incorporating GIS (Geographic Information System) 
and remote sensing data have been used to assess landslide 
susceptibility. GIS models yield advantages in multisource 
data analysis, particularly when heterogenic or uncertain 
data is involved (Bui et al., 2012). 

Among such models, the FR (Frequency Ratio) model 
has been used widely to simplify assessment (Lee and 
Sambath, 2006; Mohammedy et al., 2012). In addition, LR 
(Logistic Regression), a statistical model, has also been 
used (Akgun, 2012; Süzen and Doyuran, 2004; Yalcin et al., 
2011). Data mining models such as ANN (Artificial Neural 
Network) (Ermini et al., 2005; Yilmaz, 2009), decision trees 
(Pradhan, 2013; Saito et al., 2009), and fuzzy logic (Bui et 
al., 2012) models have similarly been used to assess landslide 
susceptibility. More recently, the EBF (Evidential Belief 
Function) (Lee et al., 2013; Pourghasemi and Kerle, 2016), 
the index of entropy (Hong et al., 2016), and support vector 
machine (Su et al., 2015) models have been applied. 

A number of models have been suggested and implemented, 
but there is still no agreement on the best model and 
technique for mapping landslide susceptibility (Wang and 
Sassa, 2005). Therefore, various models should be applied 
in a study area and the results should be compared. In Korea, 
the FR, LR, and ANN have been used widely to analyze 
landslide susceptibility (Jang et al., 2004; Lee et al., 2012; 
Oh, 2010; Yeon, 2011). However, few studies have compared 
the results from the various models. Additionally, the EBF 
model has occasionally been used for landslide susceptibility 
mapping. The efficacy and applicability of the EBF model 
can be assessed through comparison with the FR model, 
which is also a bivariate statistical model and its accuracy 
has been confirmed by many studies. This study assessed 
and compared the results of LSMs (Landslide Susceptibility 
Maps) derived using the FR and EBF models and GIS data for 
spatial prediction of landslide hazards. 

2. Study Area 

The study area is located at Nam-gu, in the southern part 

of Busan Metropolitan City, South Korea. The area covers 
approximately 25 km2, excluding some areas where spatial 
data could not be collected. It lies between the latitudes 
of 35°6′ to 35°9′ N and the longitudes of 129°4′ to 129°7′ E 
(Fig. 1). The annual average temperature is 14.8°C and the 
annual average precipitation is 1535 mm (from 2000 to 2009; 
BMCN, 2016). Heavy rain was concentrated in Busan in July 
2009. The heaviest precipitation (average: 260 mm, rate: 86 
mm/h) was recorded on July 16, 2009. According to the Busan 
Metropolitan City Hall, many roads, homes, and stores were 
flooded and destroyed by the heavy rain. Additionally, 142 
landslides occurred throughout Busan Metropolitan City; of 
these, 27.9% occurred within the study area. This study was 
based on the landslides that occurred in Nam-gu in July 2009.

3. Data and Methodology

3.1 Landslide inventory map

A landslide inventory map, which is essential for 
analyzing landslide susceptibility, can be produced by 
various methods, such as aerial photographs, satellite 
imagery, airborne LiDAR, and field surveying. In this study, 
a landslide inventory map was produced using the results 
of a comprehensive field survey performed by the Busan 
Metropolitan City Hall. From the 99 landslides identified, 
69 (70%) locations were chosen randomly for model training 
and the remaining 30 (30%) locations were used for model 
validation (Fig. 1). 

 

Fig. 1. Study area location map with hillshading and 
landslide inventory
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3.2 Landslide conditioning factors

Landslide conditioning factors were collected and 
compiled from relevant thematic maps acquired from the 
Korean government. In total, 16 factors were used, and these 
were divided into three groups (Table 1 and Fig. 2). 

The topographic factors, including elevation, slope, aspect, 
curvature, TWI (Topographic Wetness Index), SPI (Stream 
Power Index), STI (Sediment Transport Index), and distance 
from drainage, were derived from a DEM (Digital Elevation 
Model) produced using 1:5,000-scale topographic maps with 
ArcGIS software v. 10.2 (ESRI, Redlands, CA). Among these 
factors, those related to the spatial variation of hydrological 
conditions, including TWI, SPI, and STI, were produced 
based on specific catchment areas and a slope map. The 
amount of water accumulated was measured using the TWI. 
Discharge was assumed to be proportional to the catchment 
area of relevance, allowing the SPI to measure the power to 
erode of the water flow. The STI measures the overland flow’s 
capacity to transport sediments (Pourghasemi et al., 2013). 
These factors were calculated based on the formulas given 

by Beven and Kirkby (1979), Moore et al., (1991), and Moore 
and Wilson (1992), respectively, as follows:

TWI = ln ( 𝑎𝑎
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𝑁𝑁(𝑇𝑇)−𝑁𝑁(𝐷𝐷)−[𝑁𝑁�𝐶𝐶𝑖𝑖𝑖𝑖�−𝑁𝑁�𝐶𝐶𝑖𝑖𝑖𝑖∩𝐷𝐷�]/𝑁𝑁(𝑇𝑇)−𝑁𝑁(𝐶𝐶𝑖𝑖𝑖𝑖)
𝑚𝑚
𝑖𝑖=1

         (5)

Unc = �1 − (𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑖𝑖𝑖𝑖) − (𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝑖𝑖𝑖𝑖)�                     (6)

Pls = �1 − (𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝑖𝑖𝑖𝑖)�                               (7)

where 𝑁𝑁�𝐶𝐶𝑠𝑠𝑖𝑖 ∩ 𝐷𝐷� is the density of landslides given in D, 𝑁𝑁(𝐶𝐶𝑠𝑠𝑖𝑖) 

is the upslope contributing area, As is the specific 
catchment’s area, and β is the local slope gradient measured 
in degrees.

Soil factors, including topography, soil material, soil 
texture, and soil thickness, were constructed using a 
1:25,000-scale soil map. Forest factors, including timber 
type, timber diameter, timber age, and timber density, were 
produced from a 1:25,000-scale forest map. Additionally, 
lithology was extracted from a 1:50,000-scale geologic map. 

The 16 landslide conditioning factors that were produced 
were converted into 10-m-resolution raster grids. The 

Table 1. Data layers used to analyze landslide susceptibility

Category Factors Data type Scale Source
Landslide inventory – Point – BMCH a

Topographic map Elevation GRID 1:5,000 NGII b

Slope
Aspect
Curvature
TWI
SPI
STI
Distance from drainage

Soil map Topography Polygon 1:25,000 NAAS c

Soil material
Soil texture
Soil thickness

Forest map Timber type Polygon 1:25,000 KFS d

Timber diameter
Timber age
Timber density

Geology map Lithology Polygon 1:50,000 KIGAM e

a Busan Metropolitan City Hall; b National Geographic Information Institute; c National Academy of Agriculture Science;    
d Korea Forest Service; e Korea Institute of Geoscience and Mineral Resources 
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dimensions of the study area grid were 704 rows by 555 
columns, so the total number of cells was therefore 390,720. 

4. Results and Discussion

4.1 Landslide susceptibility mapping

4.1.1 FR 

In general, the locations and frequencies of landslides 
are assumed to depend on a number of factors that create 
conditions under which landslides can occur. Future 
landslides are predicted to occur when conditions are the 
same as those that prevailed when they occurred in the past 
(Lee and Pradhan, 2007). The FR correlates an area of past 
landslides with the total area under consideration. Ratios 
higher than 1 indicate that occurrence and conditioning 
factors correlate closely, whereas values <1 indicate that the 
correlation is weaker (Akgun, 2012). 

FR values were calculated for each range or category of 
the 16 landslide conditioning factors (Table 2). FR values 
increased with increasing values of elevation, and were 
highest for the >318 m class (3.782). With regards to slope, 
the 3.0–7.5˚ and >23.9˚ ranges had the highest correlations 
with landslide occurrence. Most landslides occurred on 

east- and southwest-facing slopes, with FR values of 2.540 
and 2.014, respectively. Convex areas had a higher FR value 
(1.375) than concave areas (1.298). For the case of TWI, the 
<3.2 classes, excluding the -5.2–0.4 class, had FR values 
>1.0. Among these classes, the 1.6–2.4 class had the highest 
FR value (1.607). The FR values of SPI mostly increased 
with increasing SPI values. The >2.1 class had the highest 
correlation with landslide occurrence. Similarly, for STI, the 
>35.0 class had the highest FR value at 3.541. With regards 
to distance from drainage, the distance classes of 1–28.4 m 
and 113.4–158.0 m had high FR values of 1.573 and 2.717, 
respectively. Mountain foot slope and mountain were more 
suitable for landslide occurrence. With regards to soil 
material, most landslides occurred in the porphyry and acidic 
rock classes. The fine silty and clayey classes showed high 
correlations, with values of 1.271 and 1.309, respectively. The 
soil thickness class of 20–50 cm had a FR value of 1.465. Most 
landslides occurred in Pine (D) and Pinus rigida (PR) forests. 
Additionally, the 6–16 cm, 21–40 years, and dense classes 
had the highest correlations with landslide occurrence. With 
regards to geology, the andesite (Kan) and volcanic breccia 
(Kanb) classes had FR values of 3.061 and 1.044, respectively 
(Table 2). 

Fig. 2. Landslide conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, (f) SPI, (g) STI, 
(h) distance from drainage, (i) soil topography, (j) soil material, (k) soil texture, (l) soil thickness, (m) timber type, 

(n) timber diameter, (o) timber age, (p) timber density, and (q) lithology
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Table 2. Spatial relationship between each landslide conditioning factor and landslides using the frequency ratio and the 
evidential belief function

Factor Class Percentage Percentage Frequency Evidential Belief Function
of domain of landslide ratio Bel a Dis b Unc c Pls d

Elevation 0 – 4 16.816  0.000 0.000 0.000 0.133 0.867 0.867
(m) 4 – 15 11.286  1.449 0.128 0.013 0.123 0.864 0.877

15 – 36 11.357 18.841 1.659 0.168 0.102 0.730 0.898
36 – 59 10.639  4.348 0.409 0.041 0.119 0.840 0.881
59 – 91 10.173  8.696 0.855 0.087 0.113 0.801 0.887
91 – 133 10.280  7.246 0.705 0.071 0.115 0.814 0.885
133 – 202 10.136 11.594 1.144 0.116 0.109 0.775 0.891
202 – 318  9.734 11.594 1.191 0.121 0.109 0.771 0.891
318 – 631  9.580 36.232 3.782 0.383 0.078 0.539 0.922

Slope 0 21.022  1.449 0.069 0.007 0.138 0.855 0.862
(degree) 0 – 3.0  7.138  0.000 0.000 0.000 0.119 0.881 0.881

3.0 – 7.5 12.857 15.942 1.240 0.125 0.107 0.768 0.893
7.5 – 12.5 11.209  8.696 0.776 0.078 0.114 0.808 0.886
12.5 – 16.7 10.001  5.797 0.580 0.058 0.116 0.826 0.884
16.7 – 20.3  9.658  8.696 0.900 0.091 0.112 0.797 0.888
20.3 – 23.9  9.437  5.797 0.614 0.062 0.115 0.823 0.885
23.9 – 28.9  9.353 11.594 1.240 0.125 0.108 0.767 0.892
28.9 – 84.0  9.325 42.029 4.507 0.454 0.071 0.475 0.929

Aspect Flat 21.022  1.449 0.069 0.007 0.138 0.854 0.862
N  5.559  4.348 0.782 0.085 0.112 0.803 0.888
NE  7.166  1.449 0.202 0.022 0.118 0.860 0.882
E 10.269 26.087 2.540 0.276 0.091 0.632 0.909
SE 11.508  7.246 0.630 0.068 0.116 0.815 0.884
S 10.856 14.493 1.335 0.145 0.106 0.748 0.894
SW 12.951 26.087 2.014 0.219 0.094 0.687 0.906
W 11.931 17.391 1.458 0.159 0.104 0.738 0.896
NW  8.737  1.449 0.166 0.018 0.120 0.862 0.880

Curvature Concave (-) 31.271 40.580 1.298 0.418 0.286 0.296 0.714
Flat 37.110 15.942 0.430 0.138 0.441 0.420 0.559
Convex (+) 31.618 43.478 1.375 0.443 0.273 0.284 0.727

Topography wetness index -9.1 – -5.2 10.890 14.493 1.331 0.149 0.107 0.744 0.893
-5.2 – 0.4 11.301 10.145 0.898 0.100 0.113 0.787 0.887
0.4 – 1.6 10.931 14.493 1.326 0.148 0.107 0.745 0.893
1.6 – 2.4 11.726 18.841 1.607 0.180 0.102 0.718 0.898
2.4 – 3.2 11.527 15.942 1.383 0.155 0.106 0.740 0.894
3.2 – 4.3 11.590 10.145 0.875 0.098 0.113 0.789 0.887
4.3 – 6.1 10.776  8.696 0.807 0.090 0.114 0.796 0.886
6.1 – 8.8 11.227  1.449 0.129 0.014 0.123 0.862 0.877
8.8 – 18.7 10.033  5.797 0.578 0.065 0.116 0.819 0.884

Stream power index -13.8 – -8.5 10.525  8.696 0.826 0.091 0.113 0.796 0.887
-8.5 – -6.2 10.752 14.493 1.348 0.148 0.106 0.745 0.894
-6.2 – -2.9 12.190  1.449 0.119 0.013 0.125 0.862 0.875
-2.9 – -1.1 11.083  1.449 0.131 0.014 0.123 0.862 0.877
-1.1 – -0.3 11.347  2.899 0.255 0.028 0.122 0.850 0.878
-0.3 – 0.5 10.686  4.348 0.407 0.045 0.119 0.836 0.881
0.5 – 1.2 11.191 17.391 1.554 0.171 0.103 0.725 0.897
1.2 – 2.1 11.244 23.188 2.062 0.227 0.096 0.677 0.904
2.1 – 10.6 10.981 26.087 2.376 0.262 0.092 0.646 0.908



Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 6, 597-607, 2016

602  

Table 2. (continued)

Factor Class Percentage Percentage Frequency Evidential Belief Function
of domain of landslide ratio Bel a Dis b Unc c Pls d

Sediment transport index 0 40.491 24.638 0.608 0.047 0.139 0.814 0.861
0 – 2.7 14.073  1.449 0.103 0.008 0.126 0.866 0.874
2.7 – 5.4  7.075  1.449 0.205 0.016 0.116 0.868 0.884
5.4 – 8.1  7.819 10.145 1.297 0.100 0.107 0.793 0.893
8.1 – 13.5  6.518  7.246 1.112 0.086 0.109 0.805 0.891
13.5 – 18.8  7.145  5.797 0.811 0.063 0.111 0.826 0.889
18.8 – 24.2  5.491 13.043 2.376 0.184 0.101 0.715 0.899
24.2 – 35.0  6.067 17.391 2.866 0.222 0.097 0.682 0.903
35.0 – 686.3  5.321 18.841 3.541 0.274 0.094 0.632 0.906

Distance from drainage 0 – 28.4 11.058 17.391 1.573 0.178 0.103 0.718 0.897
(m) 28.4 – 68.9 10.255  7.246 0.707 0.080 0.115 0.805 0.885

68.9 – 113.4 12.418  5.797 0.467 0.053 0.120 0.828 0.880
113.4 – 158.0 12.266 33.333 2.717 0.308 0.084 0.607 0.916
158.0 – 206.6 10.394  7.246 0.697 0.079 0.115 0.806 0.885
206.6 – 259.3 11.661  7.246 0.621 0.070 0.117 0.813 0.883
259.3 – 324.1 10.824  7.246 0.669 0.076 0.116 0.808 0.884
324.1 – 417.3 10.785  8.696 0.806 0.091 0.114 0.795 0.886
417. 3 – 1029.1 10.339  5.797 0.561 0.064 0.117 0.820 0.883

Soil topography No data  8.999  0.000 0.000 0.000 0.157 0.843 0.843
Valley  0.858  0.000 0.000 0.000 0.145 0.855 0.855
Hills 27.563 23.188 0.841 0.171 0.152 0.677 0.848
Mountain foot slope 23.260 24.638 1.059 0.216 0.141 0.643 0.859
Mountain 18.617 47.826 2.569 0.524 0.092 0.384 0.908
Alluvial fan  6.092  1.449 0.238 0.048 0.150 0.801 0.850
Fluvio-marine plain 14.610  2.899 0.198 0.040 0.163 0.797 0.837

Soil material No data  8.999  0.000 0.000 0.000 0.189 0.811 0.811
Porphyry 44.626 71.014 1.591 0.521 0.090 0.389 0.910
Acidic rock 23.984 24.638 1.027 0.336 0.170 0.493 0.830
Alluvial plain  6.092  1.449 0.238 0.078 0.180 0.742 0.820
Fluvio-marine plain 14.610  2.899 0.198 0.065 0.195 0.740 0.805
Granite  1.689  0.000 0.000 0.000 0.175 0.825 0.825

Soil texture No data  8.999  0.000 0.000 0.000 0.241 0.759 0.759
Fine silty  0.134  0.000 0.000 0.000 0.219 0.781 0.781
Coarse loamy 14.627  2.899 0.198 0.071 0.249 0.680 0.751
Fine silty 70.706 89.855 1.271 0.457 0.076 0.467 0.924
Clayey  5.534  7.246 1.309 0.471 0.215 0.314 0.785

Soil thickness No data  8.999  0.000 0.000 0.000 0.227 0.773 0.773
(cm) < 20  2.376  1.449 0.610 0.199 0.209 0.592 0.791

20 – 50 48.471 71.014 1.465 0.478 0.116 0.406 0.884
50 – 100 32.231 26.087 0.809 0.264 0.226 0.510 0.774
> 100  7.922  1.449 0.183 0.060 0.222 0.719 0.778

Timber type No data 70.320 40.580 0.577 0.044 0.172 0.784 0.828
Retinispora  0.547  0.000 0.000 0.000 0.086 0.914 0.914
Pine 14.192 33.333 2.349 0.180 0.067 0.753 0.933
Deciduous  1.946  1.449 0.745 0.057 0.086 0.857 0.914
Farmland  0.397  0.000 0.000 0.000 0.086 0.914 0.914
Mixed forest  6.470  2.899 0.448 0.034 0.089 0.877 0.911
Non-stocked forest  1.453  0.000 0.000 0.000 0.087 0.913 0.913
Artificial coniferous  0.352  0.000 0.000 0.000 0.086 0.914 0.914
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The calculated FR values were summed to calculate the 
LSI (Landslide Susceptibility Index). The LSI map (hereafter, 
FR LSI map) was classified into five zones by natural-break 
classification for ease of visual interpretation: very low, low, 
moderate, high, and very high landslide susceptibility zones. 

These landslide susceptibility zones made up 26.3%, 37.3%, 
28.9%, 14.1%, and 3.4% of the study area, respectively. 
Approximately 17% of the study area was particularly 
susceptible to landslide occurrence (Fig. 3a). 

4.1.2 EBF 

The EBF, which has its roots in Dempster–Shafer theory, 
is a way to bring together a number of separate items of 
information (the ‘evidence’) to allow for the calculation 
of the likelihood (the ‘probability’) that something will 
happen (the ‘event’) (Tangestani, 2009). There are four 
important EBF functions: the extent to which something is 
believed (Bel), the extent to which it is disbelieved (Dis), the 
degree of uncertainty (Unc), and the degree of plausibility 
(Pls) (Pourghasemi and Kerle, 2016). The upper and lower 
probability bounds are Pls and Bel. Unc represents the 
difference between belief and plausibility (Awasthi and 
Chauhan, 2011; Tien et al., 2012). These four functions are 
calculated as follows:  

Table 2. (continued)

a Believed; b disbelieved; c the degree of uncertainty; d the degree of plausibility

Factor Class Percentage Percentage Frequency Evidential Belief Function
of domain of landslide ratio Bel a Dis b Unc c Pls d

Timber type Artificial pine  0.715  0.000 0.000 0.000 0.086 0.914 0.914
Pinus regida  2.443 21.739 8.899 0.684 0.069 0.248 0.931
Left-over area  1.166  0.000 0.000 0.000 0.087 0.913 0.913

Timber diameter No data 73.336 40.580 0.553 0.096 0.459 0.446 0.541
(cm) < 6  1.418  0.000 0.000 0.000 0.209 0.791 0.791

6 – 16 10.577 44.928 4.248 0.734 0.127 0.140 0.873
18 – 28 14.668 14.493 0.988 0.171 0.206 0.623 0.794

Timber age No data 73.336 40.580 0.553 0.066 0.324 0.609 0.676
(years) 1 – 10  1.418  0.000 0.000 0.000 0.148 0.852 0.852

11 – 20  1.112  0.000 0.000 0.000 0.147 0.853 0.853
21 – 30  5.547 36.232 6.531 0.781 0.098 0.120 0.902
31 – 40 18.218 23.188 1.273 0.152 0.137 0.711 0.863
>= 50  0.368  0.000 0.000 0.000 0.146 0.854 0.854

Timber density No data 74.754 40.580 0.543 0.119 0.597 0.284 0.403
Moderate  8.914  7.246 0.813 0.179 0.258 0.563 0.742
Dense 16.332 52.174 3.195 0.702 0.145 0.153 0.855

Geology No data  9.269  0.000 0.000 0.000 0.182 0.818 0.818
Andesite 13.731 42.029 3.061 0.557 0.111 0.332 0.889
Volcanic breccia 27.765 28.986 1.044 0.190 0.163 0.647 0.837
Hornblende granodiorite  4.382  1.449 0.331 0.060 0.171 0.769 0.829
Sedimentary rock  7.125  2.899 0.407 0.074 0.173 0.753 0.827
Alluvium 37.728 24.638 0.653 0.119 0.200 0.681 0.800

Fig. 3. Landslide susceptibility map produced using 
(a) the frequency ratio and 

(b) the evidential belief function
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where 𝑁𝑁�𝐶𝐶𝑠𝑠𝑖𝑖 ∩ 𝐷𝐷� is the density of landslides given in D, 𝑁𝑁(𝐶𝐶𝑠𝑠𝑖𝑖)  is the total density of landslides that have occurred in 
the study area, N(D) is the density of pixels in D, and N(T) is 
the density of pixels in the whole study area T (Pourghasemi 
and Kerle, 2016).

Table 2 shows the results of the spatial relationships 
between landslide occurrence and landslide conditioning 
factors, using the EBF model. For the classes of elevation and 
slope, the Bel and Dis values showed that when the values 
of elevation and slope increase, the probability of landslides 
increases. The >318 m, 15–36 m, 202–318 m, and 133–202 
m classes had high Bel and low Dis values, indicating a high 
probability of landslide occurrence. The >28.9˚ slope class 
had the highest probability, followed by the 23.9–28.9 ,̊ 3.0–
7.5 ,̊ and 16.7–20.3˚ classes. The east-, south-, southwest-, 
and west-facing slopes had high Bel and low Dis values. 
The values for the remaining classes were relatively low, 
indicating a low correlation with landslide occurrence. 
Convex areas had a higher probability of landslide 
occurrence compared to concave areas. With regards to TWI, 
the probability of landslide occurrence was relatively higher 
within the classes lower than 3.2. For SPI, the >2.1 class had 
the highest probability, with high Bel and low Dis values. 
Additionally, the -8.5–-6.2, 0.5–1.2, and 1.2–2.1 classes had 
higher probabilities for landslide occurrence. With regards to 
STI, the >35.0 class had the highest probability, followed by 
the 24.2–35.0, 18.8–24.2, and 5.4–8.1 classes. The remaining 
classes had relatively low correlations. With regards to 
distance from drainage, a high probability of landslide 
occurrence was observed in the ranges of 113.4–158.0 m and 

< 28.4 m. Hills, mountain foot slope, and mountain regions 
had higher probabilities of landslide occurrence than other 
classes. Most landslides occurred in porphyry and acidic 
rock areas. With regards to soil texture and thickness, the 
highest Bel and low Dis values were for fine silty texture 
and 20–50 cm thickness, respectively. For timber type, Pine 
(D) and Pinus rigida (PR) forests had the highest probability 
for landslide occurrence. For timber diameter, the 6–16 cm 
diameter range had the highest probability with the highest 
Bel and lowest Dis values. With regards to timber age and 
timber density, the 21–30 years and dense classes had higher 
probabilities for landslide occurrence compared to other 
classes. With regards to geology, high Bel and low Dis values 
were observed for the Kan, Kanb, and alluvium (Qa) classes.

In this study, the integrated belief function map was used 
as the LSI map (hereafter, EBF LSI map). The integrated 
belief function map was produced from the summation of 
the EBF values calculated for each landslide conditioning 
factor. The EBF LSI map was classified into five zones using 
the same method as per the FR LSI map. The very low, low, 
moderate, high, and very high landslide susceptibility zones 
accounted for 25.9%, 16.4%, 22.8%, 9.1%, and 25.8% of the 
total, respectively. The very high landslide susceptibility 
zone was as high as 22.4%p compared to the FR LSI map.

4.2 Validation and comparison

The ROC (Relative Operating Characteristics) curve and 
the SCAI (Seed Cell Area Index) were used to validate and 
compare the LSI maps, which were reclassified into five 
classes by natural-break classification. 

4.2.1 ROC

The ROC curve, which is used to assess the accuracy of a 
model, is a graph of the probability of having a true positive 
on the y-axis against the probability of having a false positive 
on the x-axis (Fawcett, 2006; Williams et al., 1999). The 
AUC (Area under the ROC Curve) value, which ranges from 
0.5–1.0, can serve as a global accuracy statistic. A higher 
AUC value indicates that the model has a higher prediction 
accuracy. To apply the ROC curve, the success rate and the 
prediction rate were used to validate the LSI maps. The 
success rate curve measures how well the landslide analysis 



A Comparative Study of the Frequency Ratio and Evidential Belief Function Models for Landslide Susceptibility Mapping

605  

results fit the training dataset, whereas the prediction rate 
curve from the validation dataset shows the success of the 
LSI maps and conditioning factors in predicting landslides 
(Althuwaynee et al., 2012). The validation results showed 
that the AUC values for the FR and EBF LSI maps were 
0.806 (80.6%) and 0.795 (79.5%), with prediction accuracies 
of 0.727 (72.7%) and 0.718 (71.8%), respectively (Fig. 4). 
The accuracy of the FR LSI map was slightly higher than 
that of the EBF LSI map. It can be concluded that these 
methods provide reasonable results and that the FR LSI map 
performs better compared to the EBF LSI map for landslide 
susceptibility assessment in this study area. 

4.2.2 SCAI

The SCAI, proposed by Süzen and Doyuran (2004), 
represents the density of landslides for each landslide 
susceptibility zone. This value is calculated by dividing 
the susceptibility zone percentage by the landslide seed 
cell percentage. The general accuracy of the LSI maps is 
demonstrated by the SCAI values, as very low SCAI values 
are assigned for both the high and the very high susceptibility 
zones. In contrast, high and very high SCAI values are 
expected for the very low and low susceptibility zones 
(Akgun, 2012). These results can be interpreted as showing 
that the FR LSI map performed better compared to the EBF 
LSI map. In the low and very low classes, the FR LSI map 
had higher SCAI values (14.62%) than the EBF LSI map 
(14.15%) and also had lower SCAI values in the high and very 
high classes. In the high class, the FR and EBF LSI maps had 
quite similar SCAI values. However, the FR LSI map was 
superior because its SCAI value was lower than that for the 
EBF LSI map in the very high class as less area was classified 
to have very high susceptibility (Table 3). 

 5. Conclusions

Various methods of analyzing landslide susceptibility 
have been used in the literature. In this study, the EBF model 
was used along with the FR model to compare results. A 
landslide inventory map was produced from a field survey 
and was divided into two groups for training and validation. 
A total of 16 landslide conditioning factors were used to 
analyze landslide susceptibility. Additionally, the LSI maps 
produced were validated using the ROC curve and the SCAI 
value. With regards to the success rate and the prediction rate 
curves, the FR LSI map was as high as 0.79%p and 0.77%p, 
respectively, by comparison. The SCAI value of the FR LSI 
map in the low and very low classes (14.72%) was higher than 
that of the EBF LSI map (14.15%), and the FR LSI map also 
had lower SCAI values in the high and very high classes. 

Based on these results, the FR LSI map had a slightly higher 
accuracy for landslide susceptibility mapping in the study 
area. The FR model has advantages in terms of the calculation 
method and operation process. The EBF model can provide 
the spatial relationship between landslide occurrence and 
landslide conditioning factors with a degree of uncertainty. 

Table 3. Densities of landslides for each landslide susceptibility zone

Fig. 4. (a) Success rate curve and (b) prediction rate curve 
of each landslide susceptibility map

Frequency ratio Evidential belief function
Area (%) Seed (%) SCAI Area (%) Seed (%) SCAI

Very low 26.28 2.02 13.01 25.85 2.02 12.80
Low 37.30 23.23 1.61 16.44 12.12 1.36
Moderate 18.93 24.24 0.78 22.75 18.18 1.25
High 14.14 19.19 0.74 9.13 13.13 0.70
Very high 3.35 31.31 0.11 25.83 54.55 0.47
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Additionally, differences in correlation of factors or range 
can be revealed. Yilmaz (2009) pointed out that simple is best 
for engineering applications. In this respect, the FR model 
may be the most suitable method as it is easily executed in a 
GIS environment and interpretation of the results is also easy. 
However, the accuracy of LSI maps changes depending on the 
landslide conditioning factors and the model used. Therefore, 
the results could be improved by adding additional landslide 
conditioning factors. Additionally, a comparative study using 
various models should be undertaken in the future.
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