DOI QR코드

DOI QR Code

Active-Sensing Based Damage Monitoring of Airplane Wings Under Low-Temperature and Continuous Loading Condition

능동센서 배열을 이용한 저온 반복하중 환경 항공기 날개 구조물의 손상 탐지

  • Received : 2016.04.07
  • Accepted : 2016.10.11
  • Published : 2016.10.30

Abstract

As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beamforming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

높은 고도에서 운행되는 항공기는 -$50^{\circ}C$이하의 극저온 피로환경에 노출된다. 이때 반복하중을 통해 발생되는 크랙과 같은 미세결함은 항공기 구조물의 물성변화를 야기하고 구조물 파단과 같은 심각한 구조적 결함을 야기한다. 따라서 효율적인 구조물의 유지보수 및 수명 예측을 위해 구조물의 지속적인 상태진단이 필요하다. 본 연구에서는 실제 항공기 운행조건과 유사한 극저온 피로환경에서 항공기 날개의 구조 건전성 모니터링을 수행하였다. 초기 결함 탐지를 위해 사각배열 압전구동기 및 센서를 구조물 하단에 부착한 뒤, 유도초음파 기반 능동센싱 기법을 통해 손상에 의한 산란 및 반사파를 측정하였다. 이후 통계학적 모델 분석과 위상배열기법을 통해 손상 발생 시점을 파악 및 손상 위치 탐지를 실시하였다. 또한, 극저온 환경에서의 센서의 생존성 파악과 구조 건전성 모니터링 결과의 신뢰성 향상을 위해 센서자가진단을 실시하였다. 실험 결과, 제안된 기법을 통해 극한환경에서 운행되는 구조물의 초기 손상 탐지 및 손상 위치 탐지가 높은 정확도로 가능함을 확인하였다.

Keywords

References

  1. A. Raghavan and C. E. S. Cesnik, "Review of guided-wave structural health monitoring," The shock and Vibration Digest, Vol. 39(2), pp. 91-116 (2007) https://doi.org/10.1177/0583102406075428
  2. P. E. Lichenwalner, E. V. White and E. W. Baumann, "Industrial and commercial applications of smart structures technology," Proceeding of 1998 SPIE Conference on Smart Structures and Materials, Vol. 3326, pp. 406-417 (1998)
  3. V. T. Rathod and D. Roy Mahapatra, "Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers," NDT&E International, Vol. 44, pp. 628-636 (2011) https://doi.org/10.1016/j.ndteint.2011.07.002
  4. F. K. Chang and J. B. Ihn, "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. validation using riveted joints and repair patches," Smart Materials and Structures, Vol. 13, No. 3, pp. 621-630 (2004) https://doi.org/10.1088/0964-1726/13/3/021
  5. H. J. Jung, M. J. Lee and G. Park "Impact and damage detection method utilizing L-shaped piezoelectric sensor array," Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 5, pp. 369-376 (2014) https://doi.org/10.7779/JKSNT.2014.34.5.369
  6. S. G. Tyalor, G. Park, K. M. Farinholt and M. D. Todd, "Fatigue crack detection performance comparision in a composite wind turbine rotor blade," Structural Health Monitoring, Vol. 12, No. 3 pp. 252-262 (2013) https://doi.org/10.1177/1475921712471414
  7. S. G. Tyalor, K. Farinoholt, M. Choi, H. Jeong, J. Jang, G. Park, J. R. Lee, K. M. and M. D. Todd, "Incipient crack detection in a composite wind turbine rotor blade," Journal of Intelligent Material Systems and Structures, Vol. 25, No. 5, pp 613-620 (2014) https://doi.org/10.1177/1045389X13510788
  8. K M. Farinholt, G. Park, C. M. Ammerman "Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing," Proceeding of 2012 SPIE Conference on Smart Structures and Materials, Vol. 8343 (2012)
  9. S. G. Taylor, H. Jeong, J. K. Jang, G. Park, K. M. Farinholt, M. D. Todd and C. M. Ammerman, "Full-scale fatigue tests of CX-100 wind turbine blades Part II: analysis," Proceeding of 2012 SPIE Conference on Smart Structures and Materials, Vol. 8343 (2012)
  10. G. Park, C. R. Farrar, A. C. Rutherford and A. N. Robertson, "Piezoelectric active sensor self-diagnostics using electrical admittance measurements," ASME Journal of Vibration and Acoustics, Vol. 128, pp. 469-476 (2006) https://doi.org/10.1115/1.2202157
  11. H. J. Jo, T. Park and G. Park, "Experimental investigation on admittance-based piezoelectric sensor diagnostic process," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 1, pp. 37-43 (2015) https://doi.org/10.3795/KSME-A.2015.39.1.037
  12. T. Clark, P. Cawley, P. D. Wilcox and A. J. Croxford, "Evaluation of the damage detection system applied to a complex structure under varying term a condition," IEEE., Vol. 56. No. 12, pp. 2666-2678 (2009)
  13. Y. Lu and J. E. Michaels, "A methodology for structural health monitoring diffuse ultrasonic wave in the presence of temperature variations," Ultrasonics, Vol. 43, No. 9, pp 717-731 (2005) https://doi.org/10.1016/j.ultras.2005.05.001
  14. D. S. Hong, K. D. Nguyen, I. C. Lee and J. T. Kim, "Temperature-compensated damage monitoring by using wireless accelerationimpedance sensor node steel gider connection," International Journal of Distribute Sensor Networks, Vol. 2012, pp 1-12 (2012)