DOI QR코드

DOI QR Code

Measurement of Optical Properties of Nano-Cement Using THz Electromagnetic Waves

THz 전자기파를 이용한 나노시멘트 광학물성 측정

  • 김헌영 (한국철도기술연구원 첨단소재연구팀) ;
  • 강동훈 (한국철도기술연구원 첨단소재연구팀) ;
  • 오승재 (연의-생공연 메디컬융합 연구소) ;
  • 주철민 (연세대학교 기계공학과)
  • Received : 2016.07.01
  • Accepted : 2016.09.07
  • Published : 2016.10.30

Abstract

Enhancing mechanical strength of concrete has been fascinated using carbon-based nanomaterials such as CNT and graphene. The key to improving strength is a dispersion of nanomaterials. A novel method is required to investigate the dispersion inner concrete nondestructively. In this study, the optical optical properties such as refractive index and absorption coefficient are measured in nano-cement mortar specimens containing MWCNT and GO using THz electro-magnetic waves. From the results, the properties of nano-cement mortar are confirmed to be 1.0% to 2.5% higher in refractive index, and -14% to 28% higher in absorption coefficient than those of cement mortar at the average values. Using these characteristics, visualizing the dispersion of nano-concrete structures seems possible in future.

탄소나노튜브와 그래핀 등으로 대표되는 탄소 동소체기반 나노재료의 우수한 기계적 특성을 이용해 콘크리트의 압축강도를 증가시키기 위한 연구가 활발히 진행되고 있다. 일반적으로, 나노재료 적용을 통한 강도 향상을 위해서는 콘크리트 내 나노재료의 분산성이 높아야 하며, 이를 검증하기 위해 외부에서 비파괴적으로 확인할 수 있는 검사 기술이 요구된다. 본 연구에서는, 적외선의 직진성과 마이크로파의 투과성을 동시에 갖고 있는 THz 전자기파를 이용하여 MWCNT 및 GO가 포함된 두 종류의 나노시멘트 모르타르 시편을 제작하여 굴절률 및 흡수율과 같은 기초 광학물성 측정 시험을 수행하였다. 시험을 통해 일반 시멘트 모르타르에 비해 나노재료가 포함된 시편에서 굴절률은 평균 1.0~2.5%, 흡수율은 평균 -14~28% 차이로 측정됨을 확인하였다. 이를 통해, 비파괴적으로 콘크리트 내부에 포함된 나노재료의 분포도를 영상화할 수 있는 기술의 실현 가능성을 확인하였다.

Keywords

References

  1. J. N. Coleman, U. Khan and Y. K. Gun'ko, "Mechanical reinforcement of polymers using carbon nanotubes," Advanced Materials, Vol. 18, No. 6, pp. 689-706 (2006) https://doi.org/10.1002/adma.200501851
  2. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. evmenenko, S. T. Nguyen and R. S. Ruoff, "Preparation and characterization of graphene oxide paper," Nature, Vol. 448, No. 7152, pp. 457-460 (2007) https://doi.org/10.1038/nature06016
  3. M. K. Zalalutdinov, J. T. Robinson, C. E. Junkermeier, J. C. Culbertson, T. L. Reinecke, R. Stine, P. E. Sheehan, B. H. Houston and E. S. Snow, "Engineering graphene mechanical systems," Nano Letters, Vol. 12, No. 8, pp. 4212-4218 (2012) https://doi.org/10.1021/nl3018059
  4. W. S. Chung, D. H. Kang and Z. O. An, "Behavior of strut in concrete-filled FRP PSC bridge using FBG sensors," Journal of Korean Society of Hazard Mitigation, Vol. 9, No. 6, pp. 11-15 (2009)
  5. D. Kang, D. H. Kim and S. Jang, "Design and development of structural health monitoring system for smart railroad- gauge-facility using FBG sensors," Experimental Techniques, Vol. 38, No. 5, pp. 39-47 (2014) https://doi.org/10.1111/j.1747-1567.2012.00844.x
  6. S. Pyo, K. Wille, S. El-Tawil and A. E. Naaman, "Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension," Cement and Concrete Composites, Vol. 56, pp. 15-24 (2015) https://doi.org/10.1016/j.cemconcomp.2014.10.002
  7. K. Choi, D. Kang, S. B. Park and L. H. Kang, "A study on impact monitoring using a piezoelectric paint sensor," Journal of the Korean Society for Nondestructive Testing, Vol. 35, No. 5, pp. 349-357 (2015). https://doi.org/10.7779/JKSNT.2015.35.5.349
  8. D. Kang, H. Y. Kim and D. H. Kim, "Study on smart seat technology for railroad vehicles using piezoelectric sensors," Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 5, pp. 390-396 (2014) https://doi.org/10.7779/JKSNT.2014.34.5.390
  9. X. Yu and E. Kwon, "A carbon nanotube/cement composite with piezoresistive properties," Smart Materials and Structures, Vol. 18, No. 5, pp. 055010 (2009) https://doi.org/10.1088/0964-1726/18/5/055010
  10. M. S. Morsy, S. H. Alsayed and M. Aqel, "Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar," Construction and Building Materials, Vol. 25, No. 1, pp. 145-149 (2011) https://doi.org/10.1016/j.conbuildmat.2010.06.046
  11. S. Kumar, P. Kolay, S. Malla and S. Mishra, "Effect of multiwalled carbon nanotubes on mechanical strength of cement paste," Journal of Materials in Civil Engineering, Vol. 24, No. 1, pp. 84-91 (2011) https://doi.org/10.1061/(ASCE)MT.1943-5533.0000350
  12. H. Choi, D. Kang, G. S. Seo and W. Chung, "Effect of some parameters on the compressive strength of MWCNT-Cement composites," Advances in Materials Science and Engineering, Vol. 2015, Article ID 340808 (2015)
  13. D. Micheli, R. Pastore, A. Vricella, R. B. Morles, M. Marchetti, A. Delfini, F. Moglie, V. Mariani Primiani, "Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band," Materials Science and Engineering: B, Vol. 188, pp. 119-129 (2014) https://doi.org/10.1016/j.mseb.2014.07.001
  14. A. P. Singh, M. Mishra, A. Chandra and S. K. Dhawan, "Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application," Nanotechnology, Vol. 22, No. 46, pp. 465701 (2011) https://doi.org/10.1088/0957-4484/22/46/465701
  15. S. Parveen, S. Rana and R. Fangueiro, "A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites," Journal of Nanomaterials, Vol. 2013, No. 80 (2013)
  16. S. R. Tripathi, H. Ogura, H. Inoue, T. Hasegawa, K. Takeya and K. Kawase, "Measurement of chloride ion concentration in concrete structures using terahertz time domain spectroscopy (THz-TDS)," Corrosion Science, Vol. 62, pp. 5-10 (2012). https://doi.org/10.1016/j.corsci.2012.05.005
  17. C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee and J. H. Son, "Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes," Physical Review B, Vol. 75, No. 8, pp. 085410 (2007) https://doi.org/10.1103/PhysRevB.75.085410