DOI QR코드

DOI QR Code

The distribution of 137Cs activities in sediment samples of South-Han River basin

남한강수계 하천 퇴적물 시료 중 137Cs 분포

  • Kim, Jiyu (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Kang, Tae-Woo (Yeongsan-River Environment Research Center, National Institute of Environmental Research) ;
  • Hong, Jung-Ki (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • An, Mijeong (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Chang, Chaewon (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Kim, Kyunghyun (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Han, Young-Un (Yeongsan-River Environment Research Center, National Institute of Environmental Research) ;
  • Kang, Taegu (Yeongsan-River Environment Research Center, National Institute of Environmental Research)
  • 김지유 (국립환경과학원 물환경평가연구과) ;
  • 강태우 (국립환경과학원 영산강물환경연구소) ;
  • 홍정기 (국립환경과학원 물환경평가연구과) ;
  • 안미정 (국립환경과학원 물환경평가연구과) ;
  • 장채원 (국립환경과학원 물환경평가연구과) ;
  • 김경현 (국립환경과학원 물환경평가연구과) ;
  • 한영운 (국립환경과학원 영산강물환경연구소) ;
  • 강태구 (국립환경과학원 영산강물환경연구소)
  • Received : 2016.09.05
  • Accepted : 2016.12.14
  • Published : 2016.12.25

Abstract

$^{137}Cs$ was investigated in river bottom sediments located in South-Han River basin and it was compared with international case studies to estimate the concentration level of $^{137}Cs$ in river sediment of Korea. The obtained values of $^{137}Cs$ which was analyzed by gamma-ray spectrometry were in the range of <$MDA{\sim}3.80{\pm}0.14Bq/kg{\cdot}dry$ and similar to the $^{137}Cs$ activities in soil of Korea. According to international case studies, $^{137}Cs$ activities were between 3.7 to $15,396Bq/kg{\cdot}dry$, when pollutants such as nuclear power plant accidents and radiation leaks were present near the rivers. The $^{137}Cs$ activities showed a variety of distribution depending on the country, when pollution occurs and survey time. Also, $^{137}Cs$ activities of river sediments without pollution sources were mostly less than $10Bq/kg{\cdot}dry$ in other countries. It was comparable with the obtained $^{137}Cs$ activities in this study. The obtained values provide useful information on the background concentration of $^{137}Cs$ in river sediment and will be able to use a basis for determining contamination of $^{137}Cs$ in the river.

본 연구는 남한강 수계 하천 퇴적물 중 $^{137}Cs$의 방사능 농도 분포 실태를 조사하고, 국외 연구사례와 비교하여 국내 하천퇴적물 중 $^{137}Cs$의 농도수준을 평가하였다. 감마선분광분석기를 이용하여 퇴적물 중 $^{137}Cs$의 방사능 농도를 분석한 결과, 농도범위는 <$MDA{\sim}3.80{\pm}0.14Bq/kg{\cdot}dry$로 국내 토양 중 $^{137}Cs$ 농도와 비슷한 수준을 보였다. 국외 연구사례를 조사한 결과, 원전사고나 방사성물질 유출 등에 의한 오염원이 존재할 경우 $^{137}Cs$의 농도범위는 $3.7{\sim}15,396Bq/kg{\cdot}dry$로 국가별, 오염원 발생시기, 조사시점 등에 따라 다양한 농도 분포를 보였다. 또한, 오염원이 없는 국외 하천 호소 퇴적물 중 $^{137}Cs$의 농도는 대부분 $10Bq/kg{\cdot}dry$ 미만으로 본 연구결과와 유사한 수준으로 나타났다. 본 연구결과는 우리나라 하천퇴적물 중 $^{137}Cs$의 배경농도를 제공하고, 하천의 $^{137}Cs$ 오염여부를 판단하는 기초자료로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. USEPA, 'Ionizing Radiation Fact Book', EPA-402-F-06-061, USA, 2007.
  2. UNSCEAR, 'SOURCES AND EFFECTS OF IONIZING RADIATION', UNSCEAR 2000 REPORT Vol.?, New York: United Nations, 2000.
  3. J. A. Corcho-Alvarado, B. Balsiger, H. Sahli, M. Astner, F. Byrde, S. Röllin, R. Holzer, N. Mosimann, S. Wüthrich, A. Jakob and M. Burger, J. Environ. Radioactiv., 160, 54-63 (2016). https://doi.org/10.1016/j.jenvrad.2016.04.027
  4. J. Lehto and X. Hou, Radionuclides and their radiometric measurement. in: Lehto J, Hou X, ed. Chemistry and analysis of radionuclides., p1-24 Weinheim: Wiley-VCH; 2011.
  5. D. Huang, J. Du, B. Deng and J. Zhang, Cont. Shelf Res., 57, 10-17 (2013). https://doi.org/10.1016/j.csr.2012.04.019
  6. K. Mori, K. Tada, Y. Tawara, K. Ohno, M. Asami, K. Kosaka and H. Tosaka, Environ. Model. Softw., 72, 126-146 (2015). https://doi.org/10.1016/j.envsoft.2015.06.012
  7. J. C. Ritchie and J. R. McHenry, J. Environ. Qual., 19, 215-233 (1990).
  8. J. Y. Kim, H. J. Jung, M. J. An, J. K. Hong, T. G. Kang, T. W. Kang, Y. H. Cho, Y. U. Han, B. N. Seol, W. S. Kim and K. H. Kim, Anal. Sci. Technol., 28(6), 377-384 (2015). https://doi.org/10.5806/AST.2015.28.6.377
  9. ATSDR, 'Toxicological Profile For Cesium', PB2004-104397, USA, 2004.
  10. M. J. Madruga, L. Silva, A. R. Gomes, A. Libanio and M. Reis, J. Environ. Radioactiv., 132, 65-72 (2014). https://doi.org/10.1016/j.jenvrad.2014.01.019
  11. I. R. Ajayi, Res. J. Appl. Sci., 3(3), 183-188 (2008).
  12. USEPA, 'Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP)', Vol. 2, EPA 402-B-04-001B, USA, 2004.
  13. Y. Sanada, T. Matsunaga, N. Yanase, S. Nagao, H. Amano, H. Takada and Y. Tkachenko, Appl. Radiat. Isot., 56, 751-760 (2002). https://doi.org/10.1016/S0969-8043(01)00274-3
  14. Water Information System, http://water.nier.go.kr/front/waterEasy/information02.jsp.
  15. J. E. Lee, J. W. Choi and K. G. An, J. the Environ. Sci., 21(9), 1115-1129 (2012).
  16. M. H. Lee, H. S. Shin, K. H. Hong, Y. H. Cho and C. W. Lee, Determination of Minimum Detectable Activity in Environmental Samples, J. Radiat. Prot., 24(3), 171-184 (1999).
  17. E. S. Jang, A Study on Minimum Detection Limit of Environmental Radioactivity in HPGe Detector, Korean Soc. Radiol., 5(1), 5-10 (2011). https://doi.org/10.7742/jksr.2011.5.1.005
  18. KINS, 'Environmental Radioactivity Survey Data in Korea', KINS/ER-028, 2014.
  19. M. Frignani, D. Sorgente, L. Langone, S. Albertazzi and M. Ravaioli, J. Environ. Radioactiv., 71, 299-312 (2004). https://doi.org/10.1016/S0265-931X(03)00175-9
  20. F. Durec, M. Betti and A. Durecova, Appl. Radiat. Isot., 66, 1706-1710 (2008). https://doi.org/10.1016/j.apradiso.2007.11.021
  21. B. S. Smith, D. P. Child, D. Fierro, J. J. Harrison, H. Heijnis, M. A. C. Hotchkis, M. P. Johansen, S. Marx, T. E. Payne and A. Zawadzki, J. Environ. Radioactiv., 151, 579-586 (2016). https://doi.org/10.1016/j.jenvrad.2015.06.015
  22. E. Gourdin, O. Evrard, S. Huon, I. Lefevre, O. Ribolzi, J. L. Reyss, O. Sengtaheuanghoung and S. Ayrault, J. Hydrol., 519, 1811-1823 (2014). https://doi.org/10.1016/j.jhydrol.2014.09.056
  23. A. I. Nikitin, I. I. Kryshev, N. I. Bashkirov, N. K. Valetova, G. E. Dunaev, A. I. Kabanov, I. Y. Katrich, A. O. Krutovsky, V. A. Nikitin, G. I. Petrenko, A. M. Polukhina, G. V. Selivanova and V. N. Shkuro, J. Environ. Radioactiv., 108, 15-23 (2012). https://doi.org/10.1016/j.jenvrad.2011.11.013
  24. A. E. Khater, Y. Y. Ebaid and S. A. El-Mongy, Int. Congr. Ser., 1276, 405-406 (2005). https://doi.org/10.1016/j.ics.2004.11.112
  25. M. I. Chowdhury, M. N. Alam and S. K. S. Hazari, Appl. Radiat. Isot., 51, 747-755 (1999). https://doi.org/10.1016/S0969-8043(99)00098-6
  26. S. Charmasson, O. Radakovitch, M. Arnaud, P. Bouisset and A. S. Pruchon, Estuaries, 21(3), 367-378 (1998). https://doi.org/10.2307/1352836
  27. T. Kajimoto, S. Endo, T. Naganuma and K. Shizuma, Proceedings of International Symposium on Environmental monitoring and dose estimation of residents after accident of TEPCO'S Fukushima Daiichi Nuclear Power Stations, KURRI, Osaka, Japan, 2013.
  28. G. Mackeviciene, N. Striupkuviene and G. Berlinskas, Ekologija, 2, 69-74 (2002).
  29. T. Sawidis, D. Bellos and L. Tsikritzis, Water Air Soil Pollut., 221, 215-222 (2011). https://doi.org/10.1007/s11270-011-0784-y