DOI QR코드

DOI QR Code

Study on the simulation of a spark ignition engine using BOOST

상용 소프트웨어를 이용한 스파크 점화 기관의 시뮬레이션에 관한 연구

  • Received : 2016.11.02
  • Accepted : 2016.11.17
  • Published : 2016.11.30

Abstract

In recent years, gas engines fueled with LNG or synthetic gas have been attracting considerable attention for marine use owing to their potential to facilitate better fuel economy and to reduce emissions. It has been confirmed that gas engines using the Otto cycle, which involves premixed combustion, can satisfy Tier III regulations without the EGR or SCR system. The objective of this study is to acquire simulation technologies for predicting gas engine performances in industrial fields. Using the commercial software BOOST, the simulation is conducted on a gasoline engine rather than a marine engine due to the gasoline engine's easier accessibility. This study consists of two stages. In the first stage published previously, the optimal modeling techniques for representing the behavior of the gas in the intake and exhaust systems were determined. In the current study, we formulated a method to evaluate the combustion and heat transfer processes in the cylinder and to ultimately determine the major performance parameters, given that the analytical model derived from the previous stage has been applied. Through this study, we were able to determine a combustion and heat transfer model and a valve discharge coefficient that are less reliant on empirical data: we were also able to formulate a methodology through which relevant constants are decided. We confirmed that the values of transient cylinder pressure variation, indicated mean effective pressure, and air supply can be successfully predicted using our modeling techniques.

연료 경제와 유해 배출 가스 저감을 목적으로 최근 들어 LNG 또는 합성 가스를 사용하는 박용 가스 기관이 주목받고 있다. 예혼합 연소를 하는 오토 사이클로 작동하는 가스 기관을 구현할 경우 EGR 또는 SCR을 적용하지 않고도 Tier III의 규제를 충족할 수 있는 것으로 확인되고 있다. 본 연구에서는 오토 사이클로 작동하는 기관에 대한 시뮬레이션 기술을 산업 기술 현장에 제공하기 위한 목적으로, 실험적으로 접근이 용이한 소형 가솔린 기관을 대상으로 상용 소프트웨어인 BOOST를 이용한 시뮬레이션을 시행하였다. 이 연구는 두 단계로 구성되어 이미 시행한 첫 번째 단계에서는 흡기 및 배기 계통에 대한 최적의 모델링 방법에 관한 연구가 수행되었다. 이번 연구는 이전의 연구에서 선정된 흡 배기 계통의 해석 모델을 적용한 상황에서 실린더 내 과정을 해석하고 최종적으로 주요 성능 인자들을 계산하는 방법을 정립하였다. 이 연구를 통하여 실험에의 의존이 적은 연소 및 열전달 모델과 밸브 유량계수 모델을 선정하고 관련 상수들을 결정하는 방법을 확립하였다. 이들을 이용하여 실린더로 유입되는 공기량, 실린더 내 순간 압력 변화 및 도시평균유효압력을 효과적으로 예측할 수 있음을 확인하였다.

Keywords

References

  1. H. S. Jang, J. W. Lee, K. K. Lee, and J. S. Choi, "Prediction of NOx emission for marine gas engine," Journal of the Korean Society of Marine Engineering, vol. 38, no. 6, pp. 658-665, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.6.658
  2. M. Ott, "X-DF Low-pressure dual-fuel engine technology," WinGD Licensees Conference 2015, Interlaken, 2015.
  3. K C. Noh, D. I. Seol, K. M. Hu, and S. H. Kim, "Development and performance evaluation for 1.6 MW gas engine," Journal of the Korean Society of Marine Engineering, vol. 36, no. 2, pp. 230-237, 2012 (in Korean). https://doi.org/10.5916/jkosme.2012.36.2.230
  4. D. K. Lee, K. S. Yoon, S. P. Ryu, S. K. Woo, and H. G. Seong, "Study on the simulation of the intake and exhaust systems of a gasoline engine using BOOST," Transactions of the Korean Society of Automotive Engineers, vol. 21, no. 4, pp. 23-32, 2013. https://doi.org/10.7467/KSAE.2013.21.4.023
  5. R. S. Benson, W. J. D. Annand, and P. C Baruah, "A simulation model including intake and exhaust system for a single cylinder 4-stroke Cycle S. I. engine," International Journal of Mechanical Sciences, vol. 17, no. 2, pp. 97-124, 1975. https://doi.org/10.1016/0020-7403(75)90002-8
  6. R. S. Benson, The Thermodynamics and Gas Dynamics of Internal-Combustion Engines, vol. 1, Oxford: Clarendon Press, 1982.
  7. AVL, BOOST User's Guide Version 2014 Theory, 2014.
  8. J. I. Ghojel, "Review of the development and applications of the Wiebe function: a tribute to the contribution of Ivan Wiebe to engine research," International Journal of Engine Research, vol. 11, no. 4, pp. 297-312, 2010. https://doi.org/10.1243/14680874JER06510
  9. S. D. Hires, R. J. Tabaczynski, and J. N. Novak, "The prediction of ignition delay and combustion intervals for a homogeneous charge spark ignition engine," SAE paper 780232, 1978.
  10. G. Woschni, "A universal applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine," SAE paper 670931, 1967.
  11. J. B. Heywood, Internal Combustion Engine Fundamentals, vol. 1, New York: McGraw-Hill, 1988.
  12. S. W. Park, I. S. Choi, K. C. Rho, S. P. Ryu, K. S. Yoon, "An experimental study on measurement of flow coefficient using the steady-flow test rig," Journal of the Korean Society of Marine Engineering, vol. 36, no. 4, pp. 423-429, 2012 (in Korean). https://doi.org/10.5916/jkosme.2012.36.4.423
  13. R. S. Benson, P. C. Baruah, and Ir. R. Sierens, "Steady and non-steady flow in a simple carburettor," Proceedings of Institution of Mechanical Engineers. vol. 188, pp. 537-548, 1974.
  14. R. N. Noyes, Analytical Prediction of Discharge Coefficients for Engine Poppet Valves, GM Report-3376, General Motors, USA, 1980.
  15. S. P. Ryu, Study for Prediction of Pressure Variation in the Combustion Chamber of the Marine Diesel Engine, M.S. Thesis, Department of Mechanical Engineering, Changwon National University, Korea, 2007 (in Korean).