DOI QR코드

DOI QR Code

Effect of Surface Treatment on the Formation of NiO Nanomaterials by Thermal Oxidation

  • Hien, Vu Xuan (School of Engineering Physics, Hanoi University of Science and Technology) ;
  • Heo, Young-Woo (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2016.11.13
  • Accepted : 2016.11.30
  • Published : 2016.11.30

Abstract

Thermal oxidation has significant potential for use in synthesizing metal-oxide nanostructures from metallic materials. However, this method has limited applicability to the synthesis of multi-morphology NiO from Ni foil. Techniques consisting of mechanical and chemical approaches were used to pre-treat the Ni foil (prior to oxidation) to promote the formation of nanowires and nanoplates on the NiO layer. These morphologies were realized on the Ni foils scratched by sand paper and a knife, respectively, and subsequently heat-treated at $500^{\circ}C$ for 24 h. Small nanowires (diameter: <10 nm) formed on the Ni foil treated by absolute $HNO_3$ and then oxidized at $500^{\circ}C$ for 24 h. The formation of various morphologies (on the pre-treated Ni foil), which differ from that formed in the case of pristine Ni foil after oxidation, may be attributed to the surface melting phenomenon that occurs during the nucleation process.

Keywords

References

  1. Y.-W. Heo, S. J. Pearton, and D. P. Norton. Size-Dependent UV Photosensitivity of Indium Zinc Oxide. Journal of Nanoelectronics and Optoelectronics vol. 5, 143 (2010). https://doi.org/10.1166/jno.2010.1081
  2. V. X. Hien, J.-L. You, K.-M. Jo, S.-Y. Kim, J.-H. Lee, J.-J. Kim, and Y.-W. Heo. $H_2S$-sensing properties of $Cu_2O$ submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering. Sensors and Actuators B: Chemical vol. 202, 330 (2014). https://doi.org/10.1016/j.snb.2014.05.070
  3. Y. Zhang. Thermal oxidation fabrication of NiO film for optoelectronic devices. Appl. Surf. Sci. vol. 344, 33 (2015). https://doi.org/10.1016/j.apsusc.2015.03.099
  4. T. Ogino, M. Yamauchi, Y. Yamamoto, K. Shimomura, and T. Waho. Preheating temperature and growth temperature dependence of InP nanowires grown by self-catalytic VLS mode on InP substrate. J. Cryst. Growth vol. 414, 161 (2015). https://doi.org/10.1016/j.jcrysgro.2014.11.003
  5. A. Khan, and C. Jacob. Random and self-aligned growth of 3C-SiC nanorods via VLS-VS mechanism on the same silicon substrate. Mater. Lett. vol. 135, 103 (2014). https://doi.org/10.1016/j.matlet.2014.07.129
  6. X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan, and D. Yang. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J. Ind. Eng. Chem. vol. 26, 354 (2015). https://doi.org/10.1016/j.jiec.2014.12.009
  7. M.- H. Chu, S.- Y. Kim, S.- Y. Sung, J.- H. Lee, J.- J. Kim, D. P. Norton, S. J. Pearton, and Y.- W. Heo. Catalyst-Free Patterned Growth of Well-Aligned ZnO Nanowires on ITO Substrates Using an Aqueous Solution Method and Lithography Process. Journal of Nanoelectronics and Optoelectronics vol. 5, 186 (2010). https://doi.org/10.1166/jno.2010.1090
  8. M. L. Zhong, D. C. Zeng, Z. W. Liu, H. Y. Yu, X. C. Zhong, and W. Q. Qiu. Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. vol. 58, 5926 (2010). https://doi.org/10.1016/j.actamat.2010.07.008
  9. B. Varghese, T. C. Hoong, Z. Yanwu, M. V. Reddy, B. V. R. Chowdari, A. T. S. Wee, T. B. C. Vincent, C. T. Lim, and C.-H. Sow. $Co_3O_4$ Nanostructures with Different Morphologies and their Field-Emission Properties. Adv. Funct. Mater. vol. 17, 1932 (2007). https://doi.org/10.1002/adfm.200700038
  10. T. Yu, Y. Zhu, X. Xu, K.-S. Yeong, Z. Shen, P. Chen, C.-T. Lim, J. T.-L. Thong, and C.-H. Sow. Substrate-Friendly Synthesis of Metal Oxide Nanostructures Using a Hotplate. Small vol. 2, 80 (2006). https://doi.org/10.1002/smll.200500234
  11. M. Farhan, M. A. Khan, and T. P. Hogan. Large scale, low temperature hotplate synthesis of germanium dioxide nanowires. J. Alloys Compd. vol. 508, L21 (2010). https://doi.org/10.1016/j.jallcom.2010.08.055
  12. D. Zappa, D. Briand, E. Comini, J. Courbat, N.F. de Rooij, and G. Sberveglieri. Zinc oxide nanowires deposited on polymeric hotplates for low-power gas sensors. Procedia Eng. vol. 47, 1137 (2012). https://doi.org/10.1016/j.proeng.2012.09.352
  13. B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. S. Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, and C.-H. Sow. Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chem. Mater. vol. 20, 3360 (2008). https://doi.org/10.1021/cm703512k
  14. C. Wang, J. Liu, Q. Yang, P. Sun, Y. Gao, F. Liu, J. Zheng, and G. Lu. Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators, B vol. 220, 59 (2015). https://doi.org/10.1016/j.snb.2015.05.037
  15. Z. Wang, J. Cui, J. Li, K. Cao, S. Yuan, Y. Cheng, and M. Wang. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells. Mater. Sci. Eng., B vol. 199, 1 (2015). https://doi.org/10.1016/j.mseb.2015.05.001
  16. Z. Skoufa, E. Heracleous, and A. A. Lemonidou. On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. J. Catal. vol. 322, 118 (2015). https://doi.org/10.1016/j.jcat.2014.11.014
  17. K. Sekiya, K. Nagato, T. Hamaguchi, and M. Nakao. Morphology control of nickel oxide nanowires. Microelectron. Eng. vol. 98, 532 (2012). https://doi.org/10.1016/j.mee.2012.07.049
  18. X. Jiang, T. Herricks, and Y. Xia. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. vol. 2, 1333 (2002). https://doi.org/10.1021/nl0257519
  19. Y. Zhu, and C. H. Sow. Hot plate technique for nanomaterials. Cosmos vol. 4, 235 (2008). https://doi.org/10.1142/S0219607708000354
  20. L. Yuan, Y. Wang, R. Mema, and G. Zhou. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. vol. 59, 2491 (2011). https://doi.org/10.1016/j.actamat.2010.12.052
  21. V. X. Hien, S.-Y. Kim, J.-H. Lee, J.-J. Kim, and Y.-W. Heo. Growth of CuO nanowires on graphene-deposited Cu foil by thermal oxidation method. J. Cryst. Growth vol. 384, 100 (2013). https://doi.org/10.1016/j.jcrysgro.2013.09.019