DOI QR코드

DOI QR Code

Recrystallization Behavior in the Two-Phase (α+γ) Region of Micro-Alloyed Steels

페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동

  • Lee, Seung-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Ji-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이승용 (서울과학기술대학교 신소재공학과) ;
  • 김지연 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2016.08.29
  • Accepted : 2016.09.02
  • Published : 2016.11.27

Abstract

In this study, recrystallization behaviors in the two-phase (${\alpha}+{\gamma}$) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.

Keywords

References

  1. Y. Kim, J. Kwon, D. Jeong, N. Woo, M. Goto and S. Kim, Met. Mater. Int., 20, 851 (2014). https://doi.org/10.1007/s12540-014-5009-7
  2. L. Shi, Z. Yan, Y. Liu, X. Yang, X. Qiao, B. Ning and H. Li, Met. Mater. Int., 20, 19 (2014). https://doi.org/10.1007/s12540-014-1006-0
  3. M. Kang, H. Kim, S. Lee and S. Y. Sang, Met. Mater. Int., 21, 628 (2015). https://doi.org/10.1007/s12540-015-4607-3
  4. R. Shukla, S. K. Ghost, D. Chakrabarti and S. Chatterjee, Met. Mater. Int., 21, 85 (2015). https://doi.org/10.1007/s12540-015-1010-z
  5. I. Tamura, H. Sekine and T. Tanaka, Thermomechanical processing of high-strength low-alloy steels, Butterworth-Heinemann (2013).
  6. G. Glover and C. M. Sellars, Metall. Trans., 3, 2271 (1972). https://doi.org/10.1007/BF02643242
  7. G. Glover and C. M. Sellars, Metall. Trans., 4, 765 (1973). https://doi.org/10.1007/BF02643086
  8. T. Tanaka, N. Tabata, T. Hatomura and C. Chiga, Microalloying 75, Union Carbide Corp. (1977).
  9. T. Hashimoto, T. Sawamura and H. Ohtani, Tetsu-to-Hagane, 65, 1425 (1979). https://doi.org/10.2355/tetsutohagane1955.65.9_1425
  10. H. Sekine and T. Maruyama, Trans. Iron and Steel Inst. Japan, 16, 427 (1976).
  11. D. P. Dunne, B. Feng and T. Chandra, ISIJ Int., 31, 1354 (1991). https://doi.org/10.2355/isijinternational.31.1354
  12. K. J. Irvine, F. B. Pickering and T. Gladman, Iron and Steel Inst., 205, 161 (1967).
  13. H. Ohtska, M. Umemoto and I. Tamura, Proc. of THERMEC-88, Tokyo, Japan (1988).
  14. M. H. Thomas and G. H. Michal, Proc. of Solid-Solid Phase Trasformations, TMS-AIME, Pittsburgh, USA (1981).
  15. L. Longfei, Y. Wangyue and S. Zuqing, Metall. Mater. Trans. A, 37, 609 (2006). https://doi.org/10.1007/s11661-006-0033-y
  16. A. Najafi-Zadeh, J. J. Jonas and S. Yue, Metall. Trans. A, 23, 2607 (1992). https://doi.org/10.1007/BF02658064