DOI QR코드

DOI QR Code

Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation

전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석

  • Ichinkhorloo, Batchuluun (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Bor, Amgalan (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Uyanga, Batjargal (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Lee, Jehyun (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Choi, Heekyu (Graduate School of Material Science Engineering, Changwon National University)
  • 바춘흘루 이치커 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 보르 암갈란 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 오양가 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 이재현 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 최희규 (창원대학교 대학원 금속신소재공학과)
  • Received : 2016.08.23
  • Accepted : 2016.10.10
  • Published : 2016.11.27

Abstract

Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

Keywords

References

  1. H. Choi, J. Lee, S. Kim, G. Choi, D. Bae, S. Lee and W, Lee, Korean J. Mater. Res., 23, 89 (2013) (in Korean). https://doi.org/10.3740/MRSK.2013.23.2.89
  2. S. Sakuragi, A. Bor, J. Lee and H. Choi, Par. Aerosol Res., 11, 9 (2015) (in Korean). https://doi.org/10.11629/jpaar.2015.11.1.009
  3. A. Bor, S. Sakuragi, J. Lee and H. Choi, Korean J. Mater. Res., 25, 305 (2015). (in Korean). https://doi.org/10.3740/MRSK.2015.25.6.305
  4. Wang, H. Choi, J. Myoung and W. Lee, Carbon, 47, 3427 (2009). https://doi.org/10.1016/j.carbon.2009.08.007
  5. H. Choi, L. Wang, D. Cheon and W. Lee, Compose. Sci. Technol., 74, 91 (2013). https://doi.org/10.1016/j.compscitech.2012.10.011
  6. J. Zheng, C. C. Harris, P. Somasundaran, Powder Technol., 86, 171 (1996). https://doi.org/10.1016/0032-5910(95)03051-4
  7. H. K. Choi and W. S. Choi, Korean Chem. Eng. Res., 40, 498 (2002) (in Korean).
  8. Y. H. Park, H. Y. Jeong, B. W. Lee, S. K. Kim, W. Y. Kim and C. H. Bae, J. Korean Inst. Met. Mater., 34, 896 (1996) (in Korean).
  9. C. H. Shim, Ceramist, 10, 8 (1995) (in Korean).
  10. H. Ryu, Korean J. Mater. Res., 7, 339 (1997) (in Korean).
  11. H. Mori, H. Mio, J. Kano and F. Saito, Powder Technol., 143, 230 (2004).
  12. S. S. Kim, G. T. Park, H. S. Chung and H. K. Choi, Korean Soc. Mech. Eng., 5, 154 (2008).
  13. B. Bhushan, B. K. Gupta, Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill, NY., U.S. (1991).
  14. B. Bhushan, Mordern Tribology Handbook, vol.1 Principles of Tribology, CRC Press LLC, FR., U.S. (2000).
  15. H. Masuda, K. Higashitani and H. Yoshida, Powder Technology Handbook, 3rd ed., p. 213, Taylor & Francis, London, UK (2006).
  16. M. Andreas, N. Herman and J. M. Kramer, Part. Part. Syst. Char., 19, 17 (2002). https://doi.org/10.1002/1521-4117(200204)19:1<17::AID-PPSC17>3.0.CO;2-1
  17. H. Choi, W. Lee and S. Kim, Adv. Powder Technol., 20, 350 (2009). https://doi.org/10.1016/j.apt.2009.01.002
  18. D. W. Fuerstenau, KONA, 13, 5 (1995). https://doi.org/10.14356/kona.1995006
  19. H. Choi, W. Lee, D. Kim. S. Kumar, J. Ha, S. Kim and J. Lee, Korean J. Chem. Eng., 26, 300 (2009) (in Korean). https://doi.org/10.1007/s11814-009-0052-7
  20. H. Choi and L. Wang, Korean J. Mater. Res., 17, 532 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.10.532
  21. H. Choi, W. Lee, S. Kim and H. Chung, Int. J. Appl. Ceram. Technol., 8, 1147 (2011). https://doi.org/10.1111/j.1744-7402.2010.02548.x
  22. H. Choi, S. Kim and J. Y. Hwang. J. Miner. Soc. Kor, 20, 135 (2007) (in Korean).
  23. H. Choi, W. Lee, S. Kim and H. Chung, Int. J. Appl. Ceram. Technol., 8, 1147 (2011). https://doi.org/10.1111/j.1744-7402.2010.02548.x
  24. H. K. Choi, W. Lee, D. U. Kim, S. Kumar, J. H. Ha, S. S. Kim and J. G. Lee, Korean J. Chem. Eng., 26, 300 (2009) (in Korean). https://doi.org/10.1007/s11814-009-0052-7