DOI QR코드

DOI QR Code

염료감응 태양전지의 비백금 상대전극을 위한 니켈 나노입자-흑연질 탄소나노섬유 복합체

Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells

  • 오동현 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 이유진 (서울과학기술대학교 신소재공학과) ;
  • 안혜란 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Oh, Dong-Hyeun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Lee, Yu-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2016.08.30
  • 심사 : 2016.10.19
  • 발행 : 2016.11.27

초록

Ni nanoparticles (NPs)-graphitic carbon nanofiber (GCNF) composites were fabricated using an electrospinning method. The amounts of Ni precursor used as catalyst for the catalytic graphitization were controlled at 0, 2, 5, and 8 wt% to improve the photovoltaic performances of the nanoparticles and make them suitable for use as counter electrodes for dye-sensitized solar cells (DSSCs). As a result, Ni NPs-GCNF composites that were fabricated with 8 wt% Ni precursors showed a high circuit voltage (0.73 V), high photocurrent density ($14.26mA/cm^2$), and superb power-conversion efficiency (6.72%) when compared to those characteristics of other samples. These performance improvements can be attributed to the reduced charge transport resistance that results from the synergetic effect of the superior catalytic activity of Ni NPs and the efficient charge transfer due to the formation of GCNF with high electrical conductivity. Thus, Ni NPs-GCNF composites may be used as promising counter electrodes in DSSCs.

키워드

참고문헌

  1. H. L. An, H.-R. Kang, H. J. Sun, J. H. Han and H.-J. Ahn, Korean J. Mater. Res., 25, 672 (2015). https://doi.org/10.3740/MRSK.2015.25.12.672
  2. M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, Energy Environ. Sci., 4, 2308 (2011). https://doi.org/10.1039/c1ee01059j
  3. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS Appl. Mater. Interfaces, 1, 1145 (2009). https://doi.org/10.1021/am800249k
  4. H.-R. An and H.-J. Ahn, Korean J. Mater. Res., 24, 565 (2014). https://doi.org/10.3740/MRSK.2014.24.10.565
  5. M. Wang, A. M. Anghel, B. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009). https://doi.org/10.1021/ja905970y
  6. D.-H. Oh, H. L. An, B.-R. Koo and H.-J. Ahn, J. Korean Powder Metall. Inst., 23, 95 (2016). https://doi.org/10.4150/KPMI.2016.23.2.95
  7. F. Gong, X. Xu, Z. Li, G. Zhou and Z.-S. Wang, Chem. Commun., 49, 1437 (2013). https://doi.org/10.1039/c2cc38621f
  8. H.-R. An, H. An, W.-B. Kim and H.-J. Ahn, ECS Solid State Lett., 3, M33, (2014). https://doi.org/10.1149/2.0061408ssl
  9. G.-H. An, T.-K. Lee and H.-J. Ahn, J. Korean Powder Metall. Inst., 22, 367 (2015).
  10. K. Saranya, A. Subramania, N. Sivasankar and S. Mallick, Mater. Res. Bull., 75, 83 (2016). https://doi.org/10.1016/j.materresbull.2015.11.028
  11. I. M. A. Mohamed, M. Motlak, M. S. Akhtar, A. S. Yasin, M. H. E.-Newehy, S. S. A.-Deyab and N. A. M. barakat, Ceramics Int., 42, 146 (2016). https://doi.org/10.1016/j.ceramint.2015.08.056
  12. P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong and Q. Qiao, ACS Appl. Mater. Interfaces, 2, 3572 (2010). https://doi.org/10.1021/am100742s
  13. G. Veerappan, K. Bojan and S.-W. Rhee, ACS Appl. Mater. Interfaces, 3, 857 (2011). https://doi.org/10.1021/am101204f
  14. Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012). https://doi.org/10.1021/am3003523
  15. T. A. Ezquerra, M. T. Connor, S. Roy, M. Kulescza, J. F.- Nascimento and F. J. B.-Calleja, Compos. Sci. Technol., 61, 903 (2001). https://doi.org/10.1016/S0266-3538(00)00176-7
  16. A. Yousef, M. A. Akhtar, N. A. M. Barakat, M. Motlak, O.-B. Yang and H. Y. Kim, Electrochim. Acta, 102, 142 (2013). https://doi.org/10.1016/j.electacta.2013.04.013
  17. X. Chen, M. Li, J. Guan, X. Wang, C.T. Williams and C. Liang, Ind. Eng. Chem. Res., 51, 3604 (2012). https://doi.org/10.1021/ie202227j
  18. S.Y. Gu, J. Ren and G.J. Vancso, Eur. Polym. J., 41, 2559 (2005). https://doi.org/10.1016/j.eurpolymj.2005.05.008
  19. S. Arai, M. Endo and N. Kaneko, Carbon, 42, 641 (2004). https://doi.org/10.1016/j.carbon.2003.12.084
  20. Q. Lin, Z. Feng, Z. Liu, Q. Guo, Z. Hu, L. He and H. Ye, Carbon, 88, 252 (2015). https://doi.org/10.1016/j.carbon.2015.03.001
  21. Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, Y. Wu and D. Zhang, Carbon, 64, 132 (2013). https://doi.org/10.1016/j.carbon.2013.07.044
  22. H. L. An, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 26, 250 (2016). https://doi.org/10.3740/MRSK.2016.26.5.250
  23. M. Rameez, K. Saranya, A. Subramania, N. Sivasankar and S. Mallick, Appl. Phys. A, 122, 71 (2016)..
  24. N. Deprez and D. S. Mclachlan, J. Phys. D: Appl. Phys., 21, 101 (1988). https://doi.org/10.1088/0022-3727/21/1/015
  25. M. Gratzel, J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  26. M. Gratzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  27. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029