DOI QR코드

DOI QR Code

폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario

  • 최지훈 (연세대학교 사회환경시스템공학부) ;
  • 최승재 (연세대학교 사회환경시스템공학부) ;
  • 조철민 (연세대학교 사회환경시스템공학부) ;
  • 김태균 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Choi, Ji-Hun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Seung-Jai (School of Civil and Environmental Engineering, Yonsei University) ;
  • Cho, Chul-Min (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Tae-Kyun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2016.07.11
  • 심사 : 2016.08.31
  • 발행 : 2016.12.30

초록

최근 전 세계적으로 발생하고 있는 각종 사고 및 테러공격 등으로 인한 폭발, 충돌, 화재 사고가 빈번하게 발생하고 있으며, 특히, 2001년 미국 세계무역센터와 펜타곤에 발생한 9.11 테러사건 이후 사회적인 안전 불감증이 더욱 고조되고 있다. 또한, 2011년 일본 후쿠시마 원전사고로 인한 원전 격납건물 손상 시 발생할 수 있는 물리적, 환경적 위험성에 대한 사회적 불안감이 날로 커짐에 따라 원전격납건물, 가스탱크 등에 널리 사용되는 프리스트레스트 콘크리트 구조물에 대한 극한하중 연구가 다양하게 진행되고 있다. 본 연구에서는 2방향 비부착 프리스트레스트 콘크리트 패널 부재의 폭발저항성능을 분석하기 위하여 $1,400{\times}1,000{\times}300mm$의 철근콘크리트(RC), 프리스트레스 텐던으로만 보강된 콘크리트(PSC), 프리스트레스 텐던과 철근으로 보강된 콘크리트(PSRC) 시편을 제작하였다. 폭발하중은 ANFO 55 lbs 의 장약량을 1.0 m 이격거리로 적용하였으며, 측정하고자 하는 데이터는 초기 압력폭발하중 뿐 아니라, 반사압력, 충격량, 중앙부의 처짐, 가속도, 철근 및 콘크리트, 텐던의 변형률을 측정하여 분석하였다. 본 연구는 향후 국내외 프리스트레스트 콘크리트에 대한 방호설계 및 폭발해석 등 관련 연구분야의 중요한 자료가 될 것이라 판단된다.

In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

키워드

참고문헌

  1. Ha, J. H., Yi, N. H., Kim, S. B., Choi, J. K., and Kim, J. H. J., "Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting," Journal of the Korea Concrete Institute, Vol. 22, No. 1, 2010, pp. 93-102 (In Korean). https://doi.org/10.4334/JKCI.2010.22.1.093
  2. Ha, J. H., Yi, N. H., Choi, J. K., and Kim, J. H. J., "Experimental Study on Hybrid CFRP-PU Strengthening Effect on RC Panels under Blast Loading", Composite Structures, Vol. 93, No. 8, 2011, pp. 2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014
  3. Yi, N. H., Kim, J. H. J., Han, T. S., Cho, Y. G., and Lee, J. H., "Blast-Resistant Characteristics of Ultra-High Strength Concrete and Reactive Powder Concrete", Construction and Building Materials, Vol. 28, No. 1, 2012, pp. 578-584.
  4. Krauthammer, Theodor. "Blast-Resistant Structural Concrete and Steel Connections." International Journal of Impact Engineering, Vol. 22, No. 9, 1999, pp. 887-910. https://doi.org/10.1016/S0734-743X(99)00009-3
  5. Hyde, D. W., Fundamental of Protective Design for Conventional Weapons, CONWEP (Conventional Weapons Effects), TM5-8511-1, United States Army Waterway Experiment Station, Vicksburg, Miss., 1992.
  6. Kim, H. J., Nam, J. W., Kim, S. B., Kim, J. H. J., and Byun, K. J., "Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load," Journal of the Korea Concrete Institute, Vol. 19, No. 2, 2007, pp. 241-250 (In Korean). https://doi.org/10.4334/JKCI.2007.19.2.241
  7. Baker, W. E. Explosions in Air, Wilfred Baker Engineering, San Antonio., 1973.
  8. TM5-855-1 / AFPAM32-1147 / NAVFACP-1080 / DAHSCWEMAN-97 Design and Analysis of Hardened Structures to Conventional Weapons Effects, Joint Departments of the Army, Air Force, Navy and the Defense Special Weapons Agency, Washington, DC., 1997.
  9. Byun, K. J., Nam, J. W., Kim, H. J., and Choi, H. J., Evaluation of the Blast Resistance of Concrete Shelter Structure, Proceeding of 2nd International Conference on Design and Analysis of Protective Structures, Singapore, 2006, pp. 78-85.
  10. TM5-1300 / AFR 88-2 / NAVFAC P-39 Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC., 1990.
  11. Fenwick, B., "Media in the Wake of the Alfred P. Murrah Federal Building Bombing: A 20-Year Retrospective", Social Science Quarterly, Vol. 97, No. 1, 2016, pp. 53-64. https://doi.org/10.1111/ssqu.12252
  12. Sofinel, Reactor Building Containment Structural Design Criteria, Framatome-Korea Electric Co., Technical Specification, 1984, No. 9441.
  13. Bazant, Z. P., "Size Effect in Blunt Fracture : Concrete, Rock, Metal", Journal of Engineering Mechanics, Vol. 110, No. 4, 1984, pp. 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  14. Carpinteri, A., "Fractal nature of material microstructure and size effects on apparent mechanical properties", Mechanics of Materials, Vol. 18, No. 2, 1994, pp. 89-101. https://doi.org/10.1016/0167-6636(94)00008-5