DOI QR코드

DOI QR Code

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges

270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가

  • Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Seung-Jai (School of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Ji-Hun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Tae-Kyun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Tae-Hee (School of Civil and Environmental Engineering, Yonsei University)
  • 김장호 (연세대학교 사회환경시스템공학부) ;
  • 최승재 (연세대학교 사회환경시스템공학부) ;
  • 최지훈 (연세대학교 사회환경시스템공학부) ;
  • 김태균 (연세대학교 사회환경시스템공학부) ;
  • 이태희 (연세대학교 사회환경시스템공학부)
  • Received : 2016.07.15
  • Accepted : 2016.09.22
  • Published : 2016.12.30

Abstract

The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

LNG 저장탱크의 외조는 콘크리트 부재로 수직 방향 및 원환 방향 프리스트레싱 벽체 구조인데, 저장탱크의 대형화가 이루어짐에 따라 프리스트레싱 구간이 길어지고 그에 따른 극한 하중을 받는 LNG 저장탱크의 거동에 대한 분석이 필요하다. 본 연구는 주요 사회기반시설구조물의 하나인 LNG 저장탱크에 테러와 같은 폭발 사고가 발생하였을 때 안전성 향상을 위하여 폭발 저항 성능에 대한 분석연구를 수행하였다. 해석은 유한요소해석 프로그램인 LS-DYNA를 사용하여 270,000kL급 LNG 저장탱크 외조의 TNT 폭발에 대한 거동을 평가해보고자 한다. 또한 TNT 폭발량에 따른 폭발에 대한 LNG 저장탱크의 거동 비교를 통해 구조물의 안전성 및 사용성을 평가해보고자 한다. 이 연구의 결과를 통해 폭발량에 따른 구조물에 거동 변화를 확인하고, 설계 시 안전성 기준 및 검토의 보조자료로 활용할 수 있도록 한다.

Keywords

References

  1. Kim, C. K., and Kim, H. G., "Optimized Design of Roof Structure in LNG Storage Tank", Journal of the Korean Institute of Gas, Vol. 9, No. 4, 2005, pp. 36-43.
  2. Jeon, S. J., Jin, B. M., Yoo, J. W., and Kim, Y. J., "Design Basis for Large Above-Ground LNG Tank", Journal of Korea Concrete Institute, Vol. 15, No. 3, 2003, pp. 31-37.
  3. Delorme, L., Iglesias, A. S., and Perez, S. A., "Sloshing Loads Simulation in LNG Tankers with SPH", International Conference on Computational Methods in Marine Engineering, Barcelona, Spain, 2005.
  4. Luccioni, B. M., Ambrosini, R. D., and Danesi, R. F., "Analysis of Building Collapse Under Blast Loads", Engineering Structures, Vol. 26, No. 1, 2004, pp. 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
  5. Chen, W., Hao, H., and Chen, S., "Numerical Analysis of Prestressed Reinforced Concrete Beam Subjected to Blast Loading", Materials & Design, Vol. 65, No. 83, 2015, pp. 662-674. https://doi.org/10.1016/j.matdes.2014.09.033
  6. Jiang, H., Wang, X., and He, S., "Numerical Simulation of Impact Tests on Reinforced Concrete Beams", Materials & Design, Vol. 39, No. 14, 2012, pp. 111-120. https://doi.org/10.1016/j.matdes.2012.02.018
  7. Wang, F., Wan, Y. K. M., Chong, O. Y. K., Lim, C. H., and Lim, E. T. M., "Reinforced Concrete Slab Subjected to Close-in Explosion", Proc., 7th German LS-DYNA Forum, Bamberg, Germany, 2008.
  8. Yi, N. H., Kim, J. H. J., Han, T. S., Cho, Y. G., and Lee, J. H., "Blast-Resistant Characteristics of Ultra-High Strength Concrete and Reactive Powder Concrete", Construction and Building Materials, Vol. 28, No. 1, 2012, pp. 694-707. https://doi.org/10.1016/j.conbuildmat.2011.09.014
  9. Fang, Q., Qian, Q. H., and Shi, Y. L., "A Rate-Sensitive Analysis of R/C Beams Subjected to Blast Loads." International Conference on Structures under Shock and Impact, Udine, 1996.
  10. Li, J., and Hao, H., "Influence of Brittle Shear Damage on Accuracy of the Two-Step Method in Prediction of Structural Response to Blast Loads", International Journal of Impact Engineering, Vol. 54, No. 19, 2013, pp. 217-231. https://doi.org/10.1016/j.ijimpeng.2012.11.008
  11. Shi, Y., Hao, H., and Li, Z. X., "Numerical Derivation of Pressure-Impulse Diagrams for Prediction of RC Column Damage to Blast Loads", International Journal of Impact Engineering, Vol. 35, No. 11 , 2008, pp. 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001
  12. Lee, S. W., Jun, H. Y., Kim, J. H. J., Kim, J. H., and Lee, K. W.. "Analysis Evaluation of Impact Behavior of 270,000 kL LNG Storage Outer Tank from Prestress Force Loss", Journal of the Korean Institute of Gas, Vol. 18, No. 1, 2014, pp. 31-40. https://doi.org/10.7842/KIGAS.2014.18.1.31
  13. Conrath, E. J., "Structural Design for Physical Security: State of the Practice", American society of civil engineers, 1999.
  14. Kim, H. J., Nam, J. W., Kim, S. B., Kim, J. H., and Byun, K. J., "Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load", Journal of the Korea Concrete Institute, Vol. 19, No. 2, 2007, pp. 241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  15. Malvar, L. J., "Review of Static and Dynamic Properties of Steel Reinforcing Bars", ACI Materials Journal, Vol. 95, No. 5, 1998, pp. 609-616.
  16. Malvar, L. J., and Ross, C. A., "Review of Strain Rate Effects for Concrete in Tension", ACI Materials Journal, Vol. 95, No. 6, 1998, pp. 735-739.