DOI QR코드

DOI QR Code

A redistribution model for spatially dependent Parrondo games

공간의존 파론도 게임의 재분배 모형

  • Lee, Jiyeon (Department of Statistics, Yeungnam University)
  • Received : 2015.12.28
  • Accepted : 2016.01.13
  • Published : 2016.01.31

Abstract

An ansemble of N players arranged in a circle play a spatially dependent Parrondo game B. One player is randomly selected to play game B, which is based on the toss of a biased coin, with the amount of the bias depending on states of the selected player's two nearest neighbors. The player wins one unit with heads and loses one unit with tails. In game A' the randomly chosen player transfers one unit of capital to another player who is randomly chosen among N - 1 players. Game A' is fair with respect to the ensemble's total profit. The games are said to exhibit the Parrondo effect if game B is losing and the random mixture game C is winning and the reverse-Parrondo effect if game B is winning and the random mixture game C is losing. We compute the exact mean profits for games B and C by applying a state space reduction method with lumped Markov chains and we sketch the Parrondo and reverse-Parrondo regions for $3{\leq}N{\leq}6$.

N명의 게임자들이 둥글게 둘러앉아 공간의존 파론도 게임 B를 실시한다. 게임 B는 여러 명의 게임자들 중에서 한 명을 임의로 선택하고, 선택된 게임자는 양 옆에 있는 두 명의 게임자들의 상태에 따라 앞면이 나올 확률이 달라지는 동전을 던져서 앞면이 나오면 1원을 얻고 뒷면이 나오면 1원을 잃는다. 게임 A'은 임의로 선택된 게임자가 나머지 N - 1명의 게임자들 중에서 한 명을 임의로 선택하여 본인의 상금 1원을 전달하는 게임으로 전체 게임자들의 총 상금에는 변함이 없으므로 전체 게임자들에게는 항상 공정한 게임이다. 만약 게임 B가 지는 게임인 반면에 두 게임 A'와 B를 결합한 혼합게임 C는 이기는 게임이 되면 파론도 효과가 존재하고, 게임 B가 이기는 게임이고 혼합게임 C는 지는 게임이면 역파론도 효과가 존재한다고 한다. 먼저 마코프 체인의 상태공간의 축소를 위한 lumpability 조건이 게임 A', B 그리고 혼합게임 C에 대해 만족함을 보이고, 축소된 상태공간에서 게임 B와 C의 기대상금을 계산한다. 이를 이용하여 파론도 효과와 역파론도 효과의 존재를 확인하고, 특별히 $3{\leq}N{\leq}6$의 경우에는 파론도 효과와 역파론도 효과가 존재하는 확률 모수의 영역을 도식화 한다.

Keywords

References

  1. Cho, D. and Lee, J. (2012). Spatially dependent Parrondo games and stock investments. Journal of the Korean Data & Information Science Society, 23, 867-880. https://doi.org/10.7465/jkdi.2012.23.5.867
  2. Ethier, S. N. (2007) Markov chains and Parrondo's paradox. In Optimal Play: Mathematical Studies of Games and Gambling, edited by S. N. Ethier and W. R. Eadington, Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, 493-506.
  3. Ethier, S. N. and Lee, J. (2009). Limit theorems for Parrondo's paradox. Electronic Journal of Probability, 14, 1827-1862. https://doi.org/10.1214/EJP.v14-684
  4. Ethier, S. N. and Lee, J. (2012a). Parrondo games with spatial dependence. Fluctuation and Noise Letters, 11, 1250004. https://doi.org/10.1142/S0219477512500046
  5. Ethier, S. N. and Lee, J. (2012b). Parrondo games with spatial dependence, II. Fluctuation and Noise Letters, 11, 1250030. https://doi.org/10.1142/S0219477512500307
  6. Ethier, S. N. and Lee, J. (2012c). Parrondo's paradox via redistribution of wealth. Electronic Journal of Probability, 17, 1-21.
  7. Ethier, S. N. and Lee, J. (2015). Parrondo games with spatial dependence, III. Fluctuation and Noise Letters, 14.
  8. Harmer, G. P. and Abbott, D. (2002). A review of Parrondo's paradox. Fluctuation and Noise Letters, 2, R71-R107. https://doi.org/10.1142/S0219477502000701
  9. Jin, G. and Lee, J. (2015a). A redistribution model of the history-dependent Parrondo game. Journal of the Korean Data & Information Science Society, 26, 77-87. https://doi.org/10.7465/jkdi.2015.26.1.77
  10. Jin, G. and Lee, J. (2015b). Stock investment with a redistribution model of the history-dependent Parrondo game. Journal of the Korean Data & Information Science Society, 26, 781-790. https://doi.org/10.7465/jkdi.2015.26.4.781
  11. Lee, J. (2009). Optimal strategies for collective Parrondo games. Journal of the Korean Data & Information Science Society, 20, 973-982.
  12. Lee, J. (2011). Paradox in collective history-dependent Parrondo games. Journal of the Korean Data & Information Science Society, 22, 631-641.
  13. Parrondo, J. M. R. (1996). How to cheat a bad mathematician? In the Workshop of the EEC HC&M Network on Complexity and Chaos, ISI, Torino, Italy.
  14. Parrondo, J. M. R., Harmer, G. P. and Abbott, D. (2000). New paradoxical games based on Brownian ratchets. Physical Review Letters, 85, 5226-5229. https://doi.org/10.1103/PhysRevLett.85.5226
  15. Toral, R (2001). Cooperative Parrondo's games. Fluctuation and Noise Letters, 1, 7-12.
  16. Toral, R (2002). Capital redistribution brings wealth by Parrondo's paradox. Fluctuation and Noise Letters, 2, L305-L311. https://doi.org/10.1142/S0219477502000907
  17. Xie, N.-G., Chen, Y., Ye, Y., Xu, G., Wang, L.-G. and Wang, C. (2011). Theoretical analysis and numerical simulation of Parrondo's paradox game in space. Chaos Solutions Fractals, 44, 401-414. https://doi.org/10.1016/j.chaos.2011.01.014

Cited by

  1. 비김이 있는 연속적인 게임에 관한 연구 vol.28, pp.4, 2016, https://doi.org/10.7465/jkdi.2017.28.4.783