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ON THE INDEFINITE POSITIVE QUADRIC (@1‘2

SEONG-KOwWAN HONG

ABSTRACT. The generalized Gaussian image of a spacelike surface in L™
lies in the indefinite positive quadric QSL:2 in the open submanifold (CPftflof
the complex projective space CP™~1. The purpose of this paper is to find

out detailed information about Q7_:_72 C (CP_:_FI.

1. The Generalized Gauss Map

We begin with fixing our terminology and notation. Let L™ = (R",g) de-
note Lorentzian n-space with the flat Lorentzian metric g of index 1. Let M
be a connected smooth orientable 2 manifold, and X : M — L™ be a smooth
imbedding of M into L™. Throughout this paper, we assume that X is a space-
like imbedding or M is a spacelike surface in L™, that is, the pull back X*g of
the Lorentzian metric g via X is a positive definite metric on M.

Let M = (M, g) be a spacelike surface in L™ with the induced metric g = X*g
so that X : M — L™ is an isometric imbedding. By (u1,us) we always denote
isothermal coordinates compatible with the orientation on M. Then the metric
g is expressed locally as

g = N ((dur)* + (dug)?), A > 0. (1)

It is well known that (w1, u2) is defined around each point of M, and we may
regard M as a Riemann surface by introducing a complex local coordinate
Z = Uy + 1us.

We shall define the generalized Gauss map using local coordinates. Let M
be a spacelike surface in L™, or a Riemann surface. Locally, if u; and us are
isothermal parameters in a neighborhood of p on M, then M is defined near
p by a map X(z) = (1(2),...,2,(2)) € L™, where z = uj + iug. Define the

generalized Gauss map ¥ by

0X 0X
U(z)= — +i—
(2) duq + Z(“)ug ’
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where ¥(z) € (CP_T_L_1 ={(21,...,2,) ECP" V| =121+ 20Z5 4+ -+ + 2,27 > 0}.
Let us think of the effect of choosing another isothermal parameters 7, 12, and
Z = Uy + ius. Since the change of coordinates on a Riemann surface is analytic,
we know that

6X 8X 6X . 8X 8u1 ,6U1

— +1 =(—+4iz— Nz —i7=—) ,

8U1 8u2 Bul aUQ 3u1 811,2
which implies ¥(z) = ¥(2) in CP}~'. Since the pair of vectors gﬁ, g—qﬁ are
orthogonal and equal in length in L™, it follows that

X X
7] _3 cqQi?

8’[1,1 8 (5
where Q7% = {(z1,...,2,) € CP}™' | =212 + 222 + ... + 2,2 = 0}. Conse-
quently, the generalized Gauss map V¥ is given locally by

0X 0X _ e
(ul’UQ)Hail+82€Q12CCP+1' (2)

We may represent the Gauss map locally by

U(z) = (¢1(2),-- -, n(2))

where ¢, = 28“ = g%’; — 8:”’“ . Denote (¢1, ..., d,) by ®. Then ¥ is holomor-

phic when & is antiholomorphlc and ¥ is antiholomorphic when & is holomor-
phic. We will consider ® as the generalized Gauss map instead of .

2. On the Indefinite Positive Quadric Qifz

Note that the complex projective space CP"~! = (CP_T_L_1 U (CPO"_1 ucpP™ 1,
where the generalized Gaussian image of a spacelike surface in L™ lies in the
indefinite positive quadric Q;“Q in (CP}r“l. The indefinite Fubini-Study metric
on CP_ﬁ_l is given by
Zj<k Ej ‘ zjdzk — deZj |2

(—21Z1 + 222 + -+ 2n%n)”

ds? =2 , (3)

where €; = —1, and €¢; = 1 otherwise.

Proposition 2.1. Let H be the hyperplane in CP"~1(n > 3) defined by
H:z,_1—12,=0 (4)

Then (Q"=2)* = Q"2 \ H is biholomorphic to C"~2 under the correspondence

(Zl,"' ,Zn) = <2£1’ 7267172,1 — 2261(51)2,1 (1 — 2261(51)2>> 5 (5)
i=1

i=1
Zn—1—12n

where o = 5

, and

z Zn—
1= b= (6)

n—1 — 1Zn Zn—1 — 12n
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Proof. Given any point (z1,--- , 2 ) (Q" 2)*, if we define &, by (6), then by
the defining equation —(21)? + (22)% + - + (2,)? = 0 of Q" 72,

()24 2 _ _Fno1tiZn
()2 o+ (Gue)? = -

Hence

— (Zn—l_izn)'f‘(zn71+izn)

=1 (anl;wf) (1 -2 L (&) ) ;

Zn—1

and
(Zn 1— lzn) (zn—1+izn)

2, =
:z‘(—zw =) (146G 6)?)
which yields (5).

Conversely, given any (&1, -+ ,&,—2) € C"2, setting
n—2
21:2517.“7zn*2:2§n72azn71:1_Z€J(§J ) 2 —1+Z€J &)? (7
j=1
gives a point z = (21, ,2,) € (Qn—2)*'

Proposition 2.2. Let H be the hyperplane in CP"~1(n > 3) defined by
H:z1—20=0 . (8)
Then (Q"~2)* = Q"2 \ H is biholomorphic to C"~2 under the correspondence

(zl,---,zn):zl_@(}j@ +1Z£z 1,251,~-~,25n2>, 9)

where

e = 10
Z1 — %9 Z1 — %2 ( )
Proof. Proof is exactly the same as the proof of the Proposition 2.1 except for
the substitution (10).

O

Proposition 2.3. Suppose A € CP""!(n > 3) satisfies >, €;|a;|* < 0. To
such an A, we may assign a real number t lying in the interval 0 <t < 1, with
the following properties:

a) A is equivalent under the induced action of SO(1,n — 1) in CP"~! to
(i,—t,0,---,0) = (1,it,0,---0).

b) t =0 if and only if A is a real vector.

c) If t, s correspond to A, B, then A and B are equivalent if and only if
t=s.
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Proof. Consider first the case that A is a real vector. Since it is nonzero, we
may write A = AR where A € C and R is a real unit timelike vector in L™.
Choose an oriented basis of L™ with e; = R. In the new basis, A takes the form
(1,0,---,0) up to a constant factor A\, which gives a) with ¢ = 0.

Suppose next that A is not a real vector. If we write A = R + ¢S, then R
and S must be linearly independent.We consider the effect of choosing different
homogeneous coordinates for the point A. That amounts to multiplying through
by a complex number re?, and the effect is to get a new pair of vectors T', U,
where T + iU = re® A. A direct computation shows that

T,7)—(U,U

5| cos26 sin 260 (R,R)—(S,5)
= { —sin26 cos 26 } (<R’S>’ 2 )
There is a unique value of §( mod =) such that (T, U) = 0, and (T, T)—(U,U) <
0. Since (T, T) 4+ (U,U) < 0, at least (T',T) < 0. We may determine r uniquely
so that < T,T >= —1. Since L™ cannot have two orthogonal timelike vectors,
U must be spacelike or lightlike. But since Theorem 1.1[4] tells us that lightlike
vectors cannot be orthogonal to timelike vectors, U must be spacelike. Now we
may define orthonormal vectors e, ea by the conditions T' = ey, U = tes, where
0 <t < 1. Complete them into an oriented orthonoraml basis ey, --- ,e, of L™.
Then the point A = T'+4iU has the coordinate (1,it,0,---,0) = (i, —t,0,--- ,0).
By combining the above arguments we prove a) and b). The value of ¢ is given
by v/< U,U >. Therefore the value is uniquely determined by the conditions
that A =T + iU, where (T,U) =0, (T,T) = -1, (U,U) > 0, (T,T) < 0.Thus
the value of ¢ is clearly SO(1,n — 1)-invariant,and conversely if ¢ = s, then there
is M € SO(1,n — 1) such that M A = B. This completes the proof. O

Proposition 2.4. Suppose A € CP""*(n > 3) satisfies >, €;|a;|* > 0. Un-
der the induced action of SO(1,n—1) in CP"~1, A satisfies one of the following
statements:

a) A is equivalent to (0,0,--- ,t,4),0 <t <1, where t =0 occurs only when
A is real, and t = 1 only when A € Q" 2.

b) A is equivalent to (t,7,0,---,0),0 <t < 1, where t = 0 occurs only when
A is real.

¢) A is equivalent to (1,1,/24,0,---,0).

Remark 1. The equivalence is unique in any case.

Proof. Consider first the case that A is a real vector. Since it is nonzero,
we may write A = AR, where A € C and R is a real unit spacelike vector
in L™. Choose an oriented basis of L™ with either ¢, = R or e; = R. In
the new basis, A takes the form either (0,0,---,0,1) or (0,1,0,---,0) which
gives the case t = 0. Suppose next that A is not a real vector. If we denote
A = R+ 1S, then R and S must be linearly independent. If (R,S) = 0, and
(R,R) — (S,S) = 0, then A € Q"2 and A is equivalent to (0,---,0,1,i) by
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taking an orthonormal basis of L™ with R = e,_1, S = e,. In the opposite
case, let T +iU = re'?(R+14S). Then we can find a unique value of #( mod )
such that (T,U) = 0, (I, T) — (U,U) < 0. Since (T,T) + (U,U) > 0, U must
be spacelike. Here we are excluding the case T = O since A is assumed to
be not a real vector. We may determine r uniquely so that (U,U) = 1. T
may be (nonzero) spacelike, timelike or lightlike. IfT" is spacelike, define the
orthonormal vectors e,,_1, e, by T = te,_1, U = e,, where 0 < t < 1. If T
is timelike, define the orthonormal vectors ey, es by T' = te;, U = ey,where
0 <t < 1. In either case, completing them to an oriented orthonormal basis
€1, - ,en of L™, the point A = T + iU has the coordinates (0,0,--- ,¢,4) or
(t,4,0,--- ,0)where 0 < ¢t < 1. If T is lightlike, we can find out another lightlike
vector T such that (T,T) = 1 and (U, T) = 0. Define

T-T T+T
61:77 62:77 e3=U
Complete them into an oriented orthonormal basis ej,---,e, of L™. Then
the point A has the coordinate (?, g, 1,0,--- 7O). Since T is SO(1,n — 1)-

invariant in any case, the final statement is also true.
d

Proposition 2.5. Suppose A € CP"!(n > 3) satisfies >, €;|a;|*> = 0. Then
A is equivalent to (1,4,0,---,0), or (1,1,0,---,0), under the induced SO(1,n—
1)-action in CP™ 1.

Proof. If A is real, then A = AR for some A € C and lightlike vector R € L".
Since there is another lightlike vector R such that (R, R) = 1, by putting

R-R 6_R+R
\/§ ) 2 \/§ )

A has the coordinate (1,1,0,---,0) in CP"!. Note that R and R are linearly
independent. If A is not real, then there are two linearly independent vectors
R, S in L™ such that A = R+ 4iS. Note that (R,S) # 0.By multiplying
suitable complex number to A we can make A = T + iU, where (T,U) = 0,
(T, T) <{U,U), (U,U) =1. Since (T, T) + (U,U) = 0, (T, T) = —1. Then with
T = ey, U = es, A has the coordinate (1,4,0,--- ,0).

e =

O

Let H be a hyperplane in CP"~! defined by an equation Y €a;2; = 0,
A = (a1, - ,a,) € C}. Since Y €ca;z; = 0 defines the same hyperplane,
we may consider A € CP*~'. Let M € SO(1,n —1) and Z = MZ. Then the
equation Y €;a;2; = 0 is transformed into Y €;d;Z; = 0 using the new coordinate
Z, where A = MA.

Combining this observation with Proposition 2.3, 2.4, and 2.5, we may get
the following proposition.
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Proposition 2.6. Let H be a hyperplane in CP"Y(n > 3) defined by an
equation . €;a;z; = 0. Then H is uniquely determined as one of the following :

a) If A is a spacelike vector in Ct, then there exists M € SO(1,n — 1) such
that if we set Z = M Z, then H is transformed to cz,—1 — 7, = 0 for some ¢ € C
of the form c=1it, 0 <t <1, ¢z3 — z2 = 0 for some ¢ € C of the form c = it,
0<t<1,or—2 + % +2i%5 = 0;

b) If A is a timelike vector in C}, then there exists M € SO(1,n — 1) such
that if we set Z = MZ, then H is transformed to Z; — ¢z, = 0 for some ¢ € C
of the form c=1it, 0 <t < 1;

c) If A is a lightlike vector in CY, then there exists M € SO(1,n — 1) such
that if we set 7 = MZ, then H is transformed to z1 — iz =0 or z1 — 25 = 0.

Proof. Use the transformation of a hyperplane by the SO(1,n — 1)-action.
O

Remark 2. Combining the above proposition together with proposition 1 and
2, we get the following fact: Let H be a tangent hyperplane to Q" 2. Then
(Q””)* = Q" 2\ H is biholomorphic to C"~2 since H is transformed into
either z,_1 — iz, = 0 or z; — 29 = 0 under a suitable change of coordinates in
L.

Proposition 2.7. Let H be a hyperplane in CP"1(n > 3) defined by an
equation Y €;a;z; = 0, where A = (ay, - ,¢,) is a timelike vector in C}. Then
HNQ"2 is isometric to the quadric defined by (kz2)* + (23)° 4 -+ (22)> = 0
in CP"2, where k = 1-¢ = it, 0 <t <1.

1—[c|?”’

Proof. Since d9log (3~ €;2;%;) is invariant under the action of SO(1,n — 1) on
(CPffl, and the action of SO(1,n — 1) on fo? is an isometry, we may, by
proposition 6, assume H is given by

z1—czo=0, c=1t, 0<t<1

Note that HNQ*» 2 = HnN Qﬁfz. Let d = /1 — |¢|?, and put

21 = % (21 — CZQ) ,
Zy =5 —2) ,
23 = z3, yZn = Zn

The transformation from Z to Z is in U(1,n — 1), that is, an isometry in the
indefinite Fubini-Study metric on (CP_ffl. From its converse,
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Since the hyperplane H has the equation 27 in the new coordinate system, it
follows that foz N H satisfies
z21=0 )
2 ~ ~ —
L) BT+ 5 =0
22 + -+ [2a? > 0

But the restriction of the indefinite Fubini-Study metric on (CP;’_1 to the hyper-
plane Z; = 0 is just the usual Fubini-Study metric on CP™ 2. Hence Q" 2N H
is isometric to the quadric

K@)+ &)+ + () =0
in CP"~2, where not all Z;’s are zero. O
Proposition 2.8. Q* N H : Z?:l €a;z; = 0, where A = (a1,a9,as3,a4)) is

timelike in Ci, is a compact surface S of genus 0 whose Gauss curvature K
with respect to the indefinite Fubini-Study metric satisfies

mazK(p) =2-— ﬁ
minK(p) =2 k> |
where k is given in Proposition 2.7.

Proof. We may assume H has the equation z; — itz = 0, 0 < ¢t < 1. Then
HNQ? = HnN Qi. We already know that H N Q? is isometric to quadric
k(z2)® + (23)° 4 (24)* = 0 in CP2. The Gauss curvature of S at any point
p = (22, 23, 24) is given by the formula
3
|EP (22l + Jzs]? + [24]?)
(|k[2[2]? + [25]? + |24]2)°

K(p)=2

from which
maxK(p) =2-— ﬁ ,
minK(p) =2—|k[?
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