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ERROR ESTIMATES FOR A SEMI-DISCRETE MIXED
DISCONTINUOUS GALERKIN METHOD WITH AN
INTERIOR PENALTY FOR PARABOLIC PROBLEMS

M1 Ray Onm, HYuN Youne LeEe™*, AND JUN YoNG SHIN

ABSTRACT. In this paper, we consider a semi-discrete mixed discontinuous
Galerkin method with an interior penalty to approximate the solution of
parabolic problems. We define an auxiliary projection to analyze the error
estimate and obtain optimal error estimates in L°°(L2) for the primary
variable u, optimal error estimates in L2(L?) for u;, and suboptimal error
estimates in L (L?2) for the flux variable o.

1. Introduction

Discontinuous Galerkin methods with interior penalties which generalized
Nitsche method in [11] were introduced to approximate the solutions of elliptic
or parabolic problems by several authors [1, 6, 19]. The discontinuous Galerkin
methods are widely used for many partial differential equations because of its
advantages such as the mesh adaptivity and the local mass conservativeness.
There are now a lot of forms and names of the discontinuous Galerkin method.
For more details, we refer to [2, 3] and the literatures cited therein.

Riviere and Wheeler [18] introduced semidiscrete and fully discrete locally
conservative discontinuous Galerkin methods for nonlinear parabolic equations.
They obtained optimal error estimates in L?(H') and suboptimal error esti-
mates in L>°(L?) for semidiscrete approximations and optimal error estimates
in (2(H') and suboptimal error estimates in ¢>°(L?) for fully discrete approx-
imations. Ohm et. al [12, 13] obtained optimal error estimates in L°°(L?) for
semidiscrete approximations and optimal error estimates in £>°(L?) for fully dis-
crete approximations which improved the results of Riviere and Wheeler [18].
And using Crank-Nicolson method for time stepping, Ohm et. al [14] introduced
fully discrete discontinuous Galerkin method for nonlinear parabolic equations
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and obtained optimal error estimates in £°°(L?) for both spatial and temporal
directions.

Raviart and Thomas [17] and Nedelec [10] introduced mixed finite element
methods to approximate both primary variable and its flux variable, simulta-
neously. These mixed finite element methods requiring the inf-sup conditions
are widely used for elliptic or parabolic problems [5, 7, 9]. And Pani [15] intro-
duced H'-Galerkin mixed finite element method without inf-sup conditions for
parabolic problems. Applications of H'-Galerkin mixed finite element method
can be seen in [8, 16].

Chen [3] introduced a family of mixed discontinuous finite element methods
for second-order elliptic equations. Chen and Chen [4] developed a theory for
stability and convergence for mixed discontinuous finite element methods in a
general form for second-order partial differential problems.

In this paper, we consider a semi-discrete mixed discontinuous Galerkin
method with an interior penalty to approximate the solution of parabolic prob-
lems and obtain error estimates for both primary variable and its flux vari-
able, simultaneously. In Section 2, we introduce a model problem, semi-discrete
mixed discontinuous Galerkin method with an interior penalty for the model
problem, and some projections with approximation properties. In Section 3,
we define auxiliary projections and give some estimates for the auxiliary pro-
jections which will be used in Section 4. And in Section 4, we obtain optimal
error estimates in L°°(L?) for the primary variable u, optimal error estimates in
L?(L?) for uy, and suboptimal error estimates in L>(L?) for the flux variable
o.

2. A model problem and finite element spaces

We consider the following parabolic problem

ug — V- (a(x)Vu) = f, in 2 x (0,77,

u = gp, on 90p x (0,7,

a(z)Vu-n = gy, on 00y x (0,7, (2.1)
u(z,0) = u’(z), in Q,

where Q C R4, 1 < d < 3, is an open bounded convex domain with the boundary
0N =00pUINN, 0Np NINN = ¢ and n is the unit outward normal vector to
Q. Here a is a symmetric, positive definite bounded tensor. And f € L?(Q),
u’ € L2(Q), gp € H/?(00p), and gn € H~Y/2(9Qy) are given functions.
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Letting o = a(z)Vu, we obtain the mixed formulation of (2.1)

u—V-o=f in  x (0,77,

o = a(z)Vu, in 2 x (0,71,

U= gp, on 00Qp x (0,77, (2.2)
o-n=gy, on 00y x (0,7,

u(z,0) = u’ (), in Q.

To introduce the mixed discontinuous Galerkin finite element method for the
problem (2.1), let {7}, }r~0 be a sequence of a regular quasi-uniform partitions
of Q and each subdomain T € T}, be a triangle or a quadrilateral (a 3-simplex
or 3-rectangle) if d = 2 (if d = 3, respectively). Let hy = diam(T) be the
diameter of T" and h = maxrer, hr. From the assumptions of regularity and
quasi-uniformity, there exist constants p and - such that each T" contains a ball
of radius phy and h < vhy for all T € T),. Two adjacent elements in T} are
not required to be matched, i.e., a vertex of one element can lie on the edge
or face of another element. For a given T}, let £/ denote the set of all interior
boundaries e of T, EP and &Y be the sets of boundaries e on 9Qp and I,
respectively, E8 = EP UEN the set of the boundaries e on 98, &P = ELUEP,
and &, = EL UEP. For e € EP, m is the unit outward normal vector to 9. For
eE S}IL, with e = Ty N15 and T4, 15 € T}, the direction of n is associated with
the definition of jump across e.
For ¢ > 0, we define

HYTy,) = {v e L*(Q) :v|p € HYT), T € Ty,},
HYTy,) = {w e (L*(Q): w|p € HY(T) = (HY(T))?, T € T1,}
with

1/2
olle = ( 5 |v||%ﬂm) ,

TeTh

1/2

fwlle = ( > |w||i,e<T>) -
TeT

We simply write || - || when ¢ = 0. For v € H*(T},) with £ > 1, the jump of v
across e = 911 NIy € 5,{ is defined by

[U} = U|T2ﬂ€ - U|T1ﬂ6~

The average of v on e = 911 NIT» € 5}{ is defined as

(leﬁe + ngﬁe) .

{v} =

DO =
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As a convention, for e € Ef , the jump and the average are defined as follows:

0, ee 8,? ,

(o} =vle, o] {v, ee€&N.
Let V.= HY(T},) and W = {w € H (T},) | V-w € L*(Q)}. And let V}, =
{’U eV | ’U|T € Pk(T), T e Th} and W, = {’U) ew ‘ ’U)|T € Pk(T), T € Th}
be the finite element spaces of V and W, respectively, where Py (T) the set of
polynomials of total degree < k defined on T' and Py (T) = (Py(T))¢. They
are defined locally on each element T' € T}, so that W,(T) = Wy|r and
Vi(T) = Vi|r. Neither continuity constraint nor boundary values are imposed
on Wh X Vh.

Now the corresponding semi-discrete mixed discontinuous Galerkin method
with an interior penalty of (2.1) is: Find u; € V}, and o), € W), such that

()i, 0) + Y (o0, Vo)r = Y ({on - n},[o])e + I (un,v)
T

e SID
© (2.3)
= Z gnN,v +Zh gD7 (fav)a V’UEVha
eceN ecgD
and
(a(@)on, 7) =Y (Vun, 7)r+ Y ({7 n} [un))e
! eeE” (2.4)
= Z(gDaT . n)ev VT € Whv
eeD
where J(u,v) = > h;' [ [u][v]ds, he = e|, a(x) = a(z)~!, (, ) denote an
ecEfN

L? inner product on Q, (, )7 an L? inner product on 7', and ( , ). an L? inner
product on e. We define the following bilinear forms as follows:

A(g,r) = (a(x)gq,7), Yq,reW
B(r,v) = Z(ﬂVv)T - Z {r-n},[v])e, YVTEW,0veV, (2.5)

T ccElP
C(u,v) = J(u,v) + A(u,v), Vu,v€eV,
where )\ is a positive real number. And we define the following broken norms
on V and W as follows:
IollE: = J(v,0) + Allol|?,
IollE = 1ol + J (v, v),

2.
ol = o+ 3 13V - o2, (2.6)
TeTh

T4 = AT, 7),
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where || |1 denotes H! norm on V and || || denotes L? norm on V or W. Notice
that ||v]lc < ||v||s for sufficiently small A. And also we define the following
linear functionals on V' as follows:

F(v) = (f,v),

Gy W)=Y (gn,0)e,
ecgl

Gp(T) = (9o, 7)., (2.7)
ecgP

GH() =Y h'(gp,v)e.
ecEp

Then (2.3)-(2.4) can be rewritten into the system
((un)t,v) + B(op,v) + Clup,v) — Aup,v)

2.8
=Gn0W) +GH() + F(v), Yv eV, 28)

and
A(ep,T) — B(T,up) = Gh(1), V1 €Wy, (2.9)

Obviously, the solution (u, o) of the problem (2.2) satisfy the system

(ug,v) + B(o,v) + C(u,v) — AMu,v) 510
=Gn()+GH(v) + F(v), Yvev, (2.10)

and
A(e,7) — B(T,u) = GH(T), VT € W. (2.11)

Let P, : V — V,, and Il : W — W}, denote the projections satisfying the
following approximation properties:

v — Pyoll; < Kh o, we VAH(T), i<r<k+1,i=0,1,
|lw—Iw| < Kh'||wl|,, Ywe WNH"(T), 1<r<k+1, (2.12)
|V (w - w)| < Kh"||V-wl,, Yvwe WNH'(T), 0<r<k.

Lemma 2.1. For any u,v € V and any o, € W, the followings hold:
(1) Ale,7) < Kloflalrla, Ale,7) < Kloflwlrlw;

(2)  B(o,v) < K|allwlvlls;

(3 Cu,v) < Kfullcllvlle,  Clu,v) < Kullslv]s-

Proof. The proofs of (1) and (3) are trivial. So we will prove (2) only.
(2) Let v e V and o € W. Then

B(o,v) =Y (o,Vo)r — Y ({o-n},[v]).

T ecelD
3

1/2
< loll(z2))e (Z ”VU”?L?(T))”)
T
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+< > hell{a'n}|i2(e))l/z< 3 he1||[v]||i2(e)>l/2

D 1D
ece;, ece;,

<o llz2@))ell Vol (L2

1/2
+K[||a|%m>>d T (Zh%w ~ a||%L2(T>>d)] J(v,0)?
T

1/2
< K[nan%m)d " (Zh%uv ~ a||%L2<T>>d)}
T

1/2
190122y + T(0,0)]

< Klloflwv]ls-

This completes the proof. O

Lemma 2.2. For anyv € Vj, and any T € W, the followings hold:
(1) A(r,7) = K|IT[l3y:
(2) C(v,v) > K|v||%, for A>0.

Proof. The proofs of these results are trivial from the given conditions on a and
A> 0. O

3. Auxiliary projections and some estimates
For given (u,0) € V x W, we define (4, 6) € Vj, x W, such that
B(o —&,v)+ C(u—1u,v) =0, Yv €V (3.1)
and
Alo —o,7)— B(t,u—1u) =0, VT e Wy, (3.2)
Due to [4], the unique existence of (@, &) € V;, x W, follows from Lemmas 2.1
and 2.2.

Lemma 3.1. For any u € VOH*(T},) and any o € WNH*(T),), we have
lu—dllc +llo = &lla < KR (loflie + luller).

Proof. From (3.1)-(3.2), together with v = v, and T = 74, we obtain the
following system
B(Iljo — o, Uh) + C(Phu —u, Uh),
= B(Ilyo — o,vp) + C(Pru — u,vp,),
A(Hha' - &,Th) - B(Th, Phu - 1~L)
= Ao — o,7h) — B(Th, Phu — u).

(3.3)

(3.4)



A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD 107
Let vy, = Pou—w and 7, = II o — o in (3.3)-(3.4). Then adding both sides of
(3.3)-(3.4), we get

[Pvu —ll + Mo — &%
= C’(Phu —u, Pyu — 17) + A(th —o,Il o — 5’)
= B(th' — o, Pyu — ﬂ) + C’(Phu —u, Phu 7&)
+ A(Xlyo — o, 110 — o) — B(Il,0 — 0, Phu — u)

4
S
i=1
By (2.12), we have for € > 0
Il = B(HhO' 7O‘,PhU7a)

:Z(Hha—a,V(Phu—ﬂ)> - > ({(Hhcr—cr)-nHPhu—ﬂ})

T T ecglP

(3.5)

e

2

< K0~ o~ Mol (1 9P - )1
T

(35wl —or-nie) (3 i)

ec&ID ec&ID
< Kh™ Yo — o ||| Pyu —

+ K(|Tyo — o)+ B2V - (o — 0)||?)2 J(Pyu — @, Pyu — 1) ?
< K| lo ~ WP+ 129 - (Do — o) + el P —

< KW ||o|[f gy + ell Pru — all?-
Since
C(Pru — u, Phu — u)
= > b IPuu —ull? + A Pru —ul)?
ecElP

<KY [hTIPhu—uu% V(P — ) 3] 4 AP — 2
T

< Kh?* |44,
by (2.12), we get for ¢ > 0
I, = C(Ppu — u, Phu — )
< C(Ppu — u, Pou — u) + €| Pyu — |4
< KW ul[fy + el Pru — @2
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And by (2.12), we have the following estimates: for ¢ > 0
I3 = Ao, 0 — 6) < K|o — o4 + €||yo — 7|4
< KR V)o|[j + el Tho — 5%
and
Iy =—-B(Ilyo — 0, Pyu—u)
=— Z (Hha — o, V(Pyu— u)) + Z ({(Hha —0o)-n}, [Pou— u])
T

T eEE,IlD €

< Mo = a[[[V(u = Pru)|

N

3
+ ( Z he|| o — 5'||§> J(u — Ppu,u — Pru)
eES,{D
< K[HV(U — Pyu)|]? + J(u — Phu,u — Phu)} +€||[yo — a4
< Kbl + €l Tho — a3

Therefore, substituting the bounds for I; — Iy into (3.5) and taking € > 0
sufficiently small, we obtain

I Phu = @llE + he — all% < KR*([lo|rs + lullzsr)- (3.6)
Thus, using (2.12) and the triangular inequality, we get

lu—ilo + llo = &lla < KR (ol + lules), (3.7)
which completes the proof. O

Lemma 3.2. For any u € V N H*(T),) and any o € W 0 H*T1(T,),
lo —alw < Kn*(llo|lktr + l[ullis)-
Proof. From (2.12), the local inverse property, and Lemma 3.1, we have
V(e —o) <[V (o —Io)| + ||V (IIo — 7))
< Kh*|lo|lks + Kbt Iho — 5|
< Kh*|lo|kp1 + Kb~ ([Tho — o +[lo — &)
< Kh¥||o |41 + Kb o —&||

< K0 (ol + s ).
Therefore, using the definition of || - ||w, Lemma 3.1 and (3.8), we get

lo =&l = llo—al> + > hH|V - (o - &)l
T

(3.8)
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< K(|a AV - (o - &>|2)
< KR (ol + llul2y),
which completes the proof. O
Lemma 3.3. For any u; € VN H*(T},) and any oy € W N H’H'I(Th),
bue — Wullc + llow — Fola < th(HutHkH n ||at||k+1)7
low — Fullw < Kh’“(nutnkﬂ n ||at||k+1).

Proof. The proofs of these results are similar to those of Lemma 3.1 and Lemma
3.2. O

Lemma 3.4. For any u € V N H*'Y(T},) and any o € W 0 H(Ty,),
- @) < K-+ (||u|k+1 n |o||k+1>,
e — @) < KR (nutnkﬂ T ||at|k+1).

Proof. Define ¢ € H%(Q) and 9 € (H'(Q))¢ satisfying

V¢ —a(z)y =0, in €,
V- +Ap=u—1a, infl,
P ¢o=u—1u, in (3.9)
¢ =0, on 0Qp,
Y- -n =0, on 0Qy.

Then, by the property of elliptic regularity, we have
[oll2 + N9l < Kllu —al.

By (3.9), the integration by parts, and the definition of B(,-), we obviously
have

(47V7'1b3u A'a)::(@b7‘7(u Ara))
-y (([w ) {u— ) + ({4 mfu— ane)

ec&f
- Z (Y- -n,u—1u)e — Z (¥ -mn,u—1u)
ecgP ec&l

= B(¢,u — ).

(3.10)
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Since ¢ € H2(2) C C(), ¢ € (H*(Q))?, ¢ =0 on 0Qp, and 1p-n = 0 on Iy,
we get the followings:

(0 -5,V¢)=(0c—5,Vo)— Y ({(a -5)-n}, wl)e

eeEf
(3.11)
- a¢
(o),
= B(O’ - &7¢)
and
J(u—1u,¢) = Zh [u —ul, [}])e = 0. (3.12)
ec&lP

By (3.9)-(3.12), and the definition of A(:,-), we get
(=V -, u—1u) + Ao, u — u)
+(0—-0,V9)— (0 —0a,a(x)y)
=B(¢,u—u)+ No,u—1u)+ B(o—0,¢0) — Alc —o,7)
= B¢y — Iy, u —u) + By, u — )
+ Mo — Proyu—u) + A(Pro,u — ) + B(o —o,p — Pro)
+ Blo — 0, Pro) — A(o — o, — ) — Ao — o, I1,1).
Notice that by (2.12), we get
lu=Pul = = P+ 30 17" [ flu= Prads
ccelP (3.14)
< KRl

lu—a* =

(3.13)

and for v € V},

B(’(/) — H}ﬂb, 1})
= Z(’Lﬁ — Hh’l/i, VU)T - Z ({(1/) - th) : 'I’L}, [U])e
ceti” (3.15)
= — Z ’1,[1 Hh'l,b n}7 [U])e
ceglD
< Kh|$[lvle-

By applying (3.1), (3.2), (3.12), (3.14), and (3.15) to (3.13), we get
lu—@|* = B(sp — yth,u —u) + \(¢ — Pugp,u — ) + B(o — 7,6 — Prg)
— Alo — &,% — Tpap) — J(u — @, Pro)
= B(¢ — Iy, u — Pyu) + B(y — Iy, Pyu — )
+)\(¢_Ph¢au_a)+B(U_&a¢_Ph¢)



A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD 111
—Alo — o,y —IIpp) + J(u—u, ¢ — Pro)
< K|ll¢¥ - hplwllu — Puuls

~ By —IIxy,v

+|Pou—alc  sup By -1y, v)
vEVh,v#0 |||’U|||C

+[l¢ = Puollllu —ul| + llo — allwll¢ — Prolls

+llo = allallp — ppplla + flu —dllclle — Ph¢||c:|
< K \B fullesa |9l + Rl Pru = @llc 1]l + Rliéll2llo — o llw

+ hllo — o allelly + Alloll2)lu — allc] + KB?(|¢]|2|Ju — all
< Kh (h*|[ullsr + |Pou = alle + llo = allw + llu —allc) u —a
+ Kh?||u — a|?
and hence for sufficiently small & > 0 we have
lu—al < Kb (B*ullkss + 1Phe —alle + lo — allw + [lu —allo) -
Therefore, by Lemma 3.2, (3.6), and (3.7), we obtain
lu—all < KR (flullisr + llolle),

which completes the proof of the first result. The proof of the second result is
similar to one of the first result. O

4. Error estimates

Theorem 4.1. If (u, o) € (VN H*Y(T},)) x (W 0 H"(T},)) is the solution
of (2.2) and (up, o) € Vi, x Wi, is the solution of (2.3)-(2.4), then

lu —unllLo(z2y + hllo — on L (L2
< Khpkt1 (u||L2(Hk+1) + Hut||L2(HA-,+1) + ||O'||L2(Hk+1) + ||Ut||L2(Hk+l)>.

Proof. From (2.8)-(2.11), we obtain the system of error equations
(us — (up)t,vn) + B(o — op,vn) + C(u — up,vp) = Mu — up,vp), Yop € Vp,
Alo —op,mh) — B(th,u—up) =0, V1), € Wy,
And using (3.1)-(3.2) in the system of error equations, we get
(Ur — (un)t,vn) + B(o — on,vn) + C(@ — up, vp)

~ 4.1
= (ut—ut,vh)—l-)\(u—uh,vh), Yo, € V), ( )
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and
A(&*O’h,Th)fB(Th,ﬂfuh):(), V1, € Wy (42)
Letting vy, =4 —up, 7p =0 — o, in (4.1)-(4.2), we get
1d

§£||ﬂ—uh\\2 + 1z — unllz + llo — onl
< e — wel [l — un || + AMw — up, @ — up)

- - - - ~ 4.3
<l — uellfd — unll + Alu—all + i —wn Dl -] @)

< B e = Tl = 17— w2
Now we integrate both sides of (4.3) with respect to ¢t from 0 to t < T to get
Ly~ 2 e 2 ~ 2
Sl@—un)OI" + [ la—unlc +llo — onllads
0

< 5@ = un)(0)]

N =

t
+ K/O e = @) ()1 + [I(w = @)(s)1* + [[(@ — un)(s)]|*ds
and hence by Gronwall’s inequality we get

[ = unl[oo(r2) + 1o = unllLz(c) + lo = onllr2(a)

=< K(IIU — llp2e2) + lue = wellp2o2) + [ (w — Uh)(U)II)

< KhMt! <U||L2(Hk+1) + luell 2wy + llol L2y + ||Ut||L2(Hk+1)>~
Therefore, we have

lu — un|lpoe 2y + hllo — onl Lo (12)

< 814 (ull e + lollnsony + o lcanssn + ol )
This completes the proof. O
Theorem 4.2. If (u, ) € (VN HFY(T,)) x (W 0 H"Y(Ty,)) is the solution
of (2.2) and (up, o) € Vi, x Wy, is the solution of (2.3)-(2.4), then

[l — (Uh)t||L2(L2)

< 0 (L) + lunlzagnnsny + loliagamnsn + ol seqenon ).

Proof. Differentiating (4.2) with respect to t, we obtain
A(&t — (O’h)t,Th) — B(Th,at — (Uh)t) = O, VTh S Wh. (44)
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Letting vy, = uz—(up)¢, Th = 0—0op in (4.1) and (4.4) and adding the resulting
equations, we get
e — (un)el® + C(@ — up, G — (un)e) + A(Ge — (On)1, & — o)
= (U — ug, U — (up)t) + Mu — up, ar — (up)t).
Since

C(ﬂ — ’U/h,at — (Uh)t) = J(?j — ’U/h,at — ( ) ) + )\(ﬂ — Uh,at — (Uh)t)

= S RN w4 P

ec&lP
1d
= S lT -l
and
~ ~ 1 d 1 ~ 2
A(or — (on), 0 —op) = 5 [laz(z)(d —on)l,
2dt
we obtain
~ o, 1d (- 2 1 ~ 2
e = (un)ell” + 5 N = unlle + llaz (2)(@ — o)l
< e — wefl e — (un)ell + Ml — wn || [de — (un)ell
and so

~ d 1 ~
= Cand? + 5 (17wl + o @)@ - )]
< K — el + u — ).

Now we integrate both sides of the above inequality with respect to ¢ from 0 to
t < T to get

~ ~ 1 ~
[Ge = (un)ellZ2 2y + supp pilld — unlle: + lla® (2)(F — o) |7 g2
< K ([t = well7z 2y + lu = unllizr2)
and so, by Theorem 4.1 and Lemma 3.4, we get
[ — (Uh)tH%z(Lz) + |lu— Uh”%oo(m) + (e — O'h)”ioo(ﬂ)
< K(l[te — uell72z2) + llu = unllZ2p2))
< KR+ (||0'%2(Hk+1) Flloell Tz ey + Il Zaggesy + ||Ut||%2(Hk+1)>-
Therefore, using the triangular inequality and Lemma 3.4, we have
[l — (Uh)t||L2(L2)
< KhM! (U||L2(Hk+1) Flloell L2 ey + ull L2 ey + Ut|L2(Hk+1)>-

This completes the proof. U
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