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A MATHEMATICAL MODEL OF IMMUNE-MEDIATED

DISORDER IN INFLAMMATORY BOWEL DISEASE

Anna Park and Il Hyo Jung

Abstract. Inflammatory Bowel Disease(IBD) is chronic, relapsing, im-

mune mediated disorder. The exact cause of IBD is still unknown. The
immune system is known to play important role in the dynamics of IBD.

We focus on relation between T cells and cytokines in immune system that

leads to IBD. In this paper, we propose a mathematical model describing
IBD under considering immune mediated disorder by using ordinary differ-

ential equations. The existence and stability of the model are established,

where an applicable basin of attraction are calculated and examined. Some
numerical simulations are presented to verify the proposed results and as

changing parameter values given by sensitivity analysis, we show how to

change dynamic behaviors of the model.

1. Introduction

Inflammatory Bowel Disease(IBD) is a chronic, relapsing, immune mediated
disorder. The prevalence of IBD rapidly increased in Europe and North America
in the second half of the twentieth century and is becoming more common in
the rest of the world as different countries adopt a Western lifestyle([1],[2]).
The main forms of IBD are divided into Crohns disease(CD) and Ulcerative
colitis(UC).

The exact cause of IBD is still unknown. It is estimated that both envi-
ronmental and genetic factor cause IBD. It is assumed that the change of our
lifestyle augments this kind of disease. Above all since people use large amount
of antibiotics and vaccine, our lifestyle has become more and more hygienic[2].
Also, a diet high in protein, particular animal protein, may be associated with
increased risk of IBD and relapses[3].

The immune system is known to play an important role in the dynamics
of IBD[4]. There are many studies that deal with mathematical models about
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immunopathogenesis and also diseases arise from an inappropriate immune sys-
tem. In [5], the authors described a mathematical model about skin disease
related with the densities of immune cells(Dendritic cells and Helper T cells)
and Keratinocytes[5]. Moorea et.al.(2004) analyzed a mathematical model for
chronic myelogenous leukemia (CML), a cancer of the blood[6].

Some researchers have concentrated on cytokine-mediated inflammatory pro-
cesses rather than the densities of immune cells. Seymour and Henderson(2001)
described the behavior of IL-1 and IL-10, with TNF-α as an external stimulus
for IL-1, using a six-variable ODE model([7],[8]). However there are not so much
research papers about IBD dealing with mathematical models. In 2006, Wen-
delsdorf et al. found the positive inflammatory feedback loop by inflammatory
M1 macrophage activation of T-cells under the immunopathology of IBD[9]. In
Lo et al.[10], they extend the model to include Treg cells.

In this work, we focus on relation between T cells and cytokines in immune
system that leads to IBD. In particular, we considered the interaction between
Naive T cells, Helper T cells, and cytokines secreted by Helper T cells in the
body because the three compartment are important role in immune system.
Thus we first present a mathematical model describing IBD by using ordinary
differential equations. We observe the existence of solutions of the model, sta-
bility of equilibria for the model and some numerical simulations. Conditions
for local stability and global stability of the equilibrium are determined. The
equilibrium demonstrates the case of how the T cells proferate and attain a
particular equilibrium level in IBD patient.

The rest of this paper is organized as follows. In Section 2 we set up mathe-
matical modeling for IBD in detail and the existence of solutions and a positive
equilibrium of the IBD model are established. In Sections 3 and 4, some other
the techniques and theories useful in the study of the model are introduced.
Some numerical simulations are presented to verify the proposed results and
by changing parameter values, we show how to change dynamics of the model.
Finally, the conclusion is given in Section 5.

2. A Mathematical Model

Pathophysiology of IBD is related to the immune. Immunity is a process to
protect body from non-self such as bacteria or virus[4]. Normally, if bacteria
or virus intrude from outside, body is protected by immune response. In se-
vere case, inflammatory reaction occurs. The inflammatory reaction disappears
when the causes such as bacteria or virus are removed. However, the case of
IBD is different. In this case, even though the causes which stimulate immune
response are removed, it is unrestrained various substances that mediate inflam-
mation such as Type 1 T-helper lymphocyte(Th1) activation, Type 2 T-helper
lymphocyte(Th2) activation and cytokines release. Cytokines release are asso-
ciated with the generation of activated matrix metalloproteinases(MMP), which
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are essential mediators of tissue destruction. Additionally, cytokines act on neu-
trophils and phagocytes, which contribute to amplification of the inflammatory
response and further tissue damage[11].

Th1 cells produce high levels of IFN-γ whereas Th2 cells secrete too much
interleukin-4(IL-4) and other interleukins, including IL-10, IL-5 and IL-13. Th1
cells play important role in immune responses to intracellular pathogens, such
as viruses and intracellular bacteria[12]. By contrast, Th2 responses are more
appropriate for targeting parasites and worms, and for enabling antibody re-
sponses.

Specifically, overexpression of proinflammatory Th1 cytokines such as tumor
necrosis factor(TNF), IL-6, IL-12 and IFN-γ is a main factor of Crohn’s disease,
and Th2 cytokines IL-4 and IL-13 cause ulcerative colitis. The Th1 cytokine
profile, which includes IFN-γ and IL-12, is dominant in patients with Crohn’s
disease. IFN-γ production is stimulated by IL-12, which is produced by antigen-
presenting cells(APCs). Most experimental colitis models also have a dominant
TH1 response. However, in some models, Th1 responses can be changed into
Th2 responses as the inflammatory process matures. In Th2 responses, IL-4 and
IL-5 are normally elevated. Also, in ulcerative colitis tissues, the concentrations
of IL-4 and IL-5 are variable[1].

Naive T cells are divided into subsets that are commonly defined by the cy-
tokines that they secrete[13]. These cytokines are responsible for T-cell-effector
function and allow for the development of other immune responses, or have di-
rect effects on tissues. The long-standing paradigm for Th differentiation is the
Th1 and Th2 model[14]. Th1 cells produce high levels of IFN-γ whereas Th2
cells express IL-4 and other interleukins, including IL-10, IL-5 and IL-13.

Our purpose is to use some of the best ideas in these model, but to keep the
model as simple as possible while incorporation the most important concepts
of IBD dynamics together with the feature of cytokines dynamics. Therefore,
we define three population. The model comprises initially 3 variables, namely
the concentration of Naive T cells N(t), the concentration of Helper T cell T (t)
including Th1 and Th2, the cytokines secreted by Helper T cell denoted by S(t)
including many kinds of cytokines(see Figure 1).

The complete model is described by the following the system of differential
equation: 

dN

dt
= bN

(
1− N

K

)
− (γS + c)N − µ1N

dT

dt
= α1γSN + α2cN − µ2T

dS

dt
= ωT − βNS − µ3S.

(1)

All parameters are assumed to be strictly positive constant.
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Figure 1. Schematic diagram of Inflammatory Bowel Disease

Notation Description of parameter
b The growth rate of Naive T cell.
K Carrying capacity.
γ Coefficient, represents the loss of N due to encounters S.
c The rate of internal production for T differentiation.
α1 The rate of proliferation and differentiation into N by S.
α2 The rate of proliferation and differentiation into N by c.
ω The rate of S production from T .
β Coefficient, represents the loss of S due to encounters N .
µ1 The rate of excretion and elimination of N .
µ2 The death rate constant for T .
µ3 The death rate constant for cytokines S.

Table 1. Description of parameters for the model (1).

2.1. Existence and Invariance

In this section, we show that the model (1) is positively invariant and has
the solution.

Theorem 2.1. Let (t0,Ψ0) ∈ R × R3, where Ψ0 = (N(t0), T (t0), S(t0)) be
given. Then there exists a unique solution (N(t), T (t), S(t)) of the model (1).

Proof. Put

Ψ :=

NT
S

 .
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Then
dΨ

dt
= AΨ +B(Ψ),

where A =

b− c− µ1 0 0
α2c −µ2 0
0 ω b− µ3

 and B(Ψ) =


b

K
N2 − γSN
α1γSN
−βNS

.

For some given a, b > 0, we denote by Γ = {(t,Ψ) ∈ R × R3 | |t − t0| ≤
a, ‖Ψ−Ψ0‖ ≤ b}. Define F : Γ→ R3 by F (t,Ψ) = AΨ+B(Ψ) for all (t,Ψ) ∈ Γ.

For any Ψ1 = (N̄ , T̄ , S̄)T and Ψ2 = (N̂ , T̂ , Ŝ)T , we have

‖F (t,Ψ1)− F (t,Ψ2)‖
= ‖A(Ψ1 −Ψ2) + (B(Ψ1)−B(Ψ2))‖
≤ ‖A‖‖Ψ1 −Ψ2‖+ ‖B(Ψ1)−B(Ψ2)‖

≤ (|b− c− µ1|+ |α2c|+ |µ2|+ |µ3|)(|N̄ − N̂ |+ |T̄ − T̂ |+ |S̄ − Ŝ|)

+

∣∣∣∣( b

K
N̄2 − γS̄N̄

)
−
(
b

K
N̂2 − γŜN̂

)∣∣∣∣+ |α1γS̄N̄ − α1γŜN̂ |

+ |βN̄S̄ − βN̂Ŝ|

≤M(|N̄ − N̂ |+ |T̄ − T̂ |+ |S̄ − Ŝ|) +
b

K
|N̄ + N̂ ||N̄ − N̂ |

+ (γ + α1γ + β)(|S̄||N̄ − N̂ |+ |N̄ ||S̄ − Ŝ|),

≤ L1|N̄ − N̂ |+ L2|T̄ − T̂ |+ L3|S̄ − Ŝ|,

≤ L[|N̄ − N̂ |+ |T̄ − T̂ |+ |S̄ − Ŝ|],
≤ L‖Ψ1 −Ψ2‖,

where M = |b−c−µ1|+|α2c|+|µ2|+|µ3|, L1 = M+
b

K
|N̄+N̂ |+(γ+α1γ+β)|S̄|,

L2 = M , L3 = M + (γ + α1γ + β)|N̂ |, and L = max{L1, L2, L3}.
By the Picard-Lindelöf theorem, we are done. �

The feasible region B = {(N,T, S) ∈ R3 | N,T, S ≥ 0} for the model (1) is
the non-negative cone R3, which can be shown to be positively invariant with
respect to the model (1). Given non-negative initial data, solutions exist and
have non-negative components for all t ≥ 0, and thus the model is well posed.

Theorem 2.2. The model (1) is positively invariant. In other word, if the
initial conditions lie in B, the system of equation has a unique solution that
remains in B for all time t ≥ 0.

Proof. By Theorem 2.1, the model (1) with initial value (t0,Ψ0) has a unique
solution and the right hand side of the model (1) is continuous with continuous

partial derivatives in B. Moreover, if N(t) = 0 then
dN

dt
= 0; if T (t) = 0 then
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dT

dt
= α1γSN + α2cN ≥ 0; if S(t) = 0 then

dS

dt
= ωT ≥ 0. Therefore, none of

the orbits can leave B for all time. �

3. Stability of an Equilibrium

In this section, stability of the 3-dimensional equilibrium with respect to
solutions initiating in int B will be established.

3.1. Equilibria of Model

The equilibria of the model (1) are obtained by solving the system of equa-
tions:

bN

(
1− N

K

)
− (γS + c)N − µ1N = 0,

α1γSN + α2cN − µ2T = 0,
ωT − βNS − µ3S = 0,

(2)

where we see that

−bAN2 + (ABK − bµ2µ3 −Kγα2ωc)N + µ2µ3KB = 0,

with A = µ2β − ωα1γ and B = b− c− µ1.
The solutions of the above equation are

N =
H ±

√
H2 + 4bKABµ2µ3

2bA
,

where H = ABK − bµ2µ3 −Kγα2ωc.

From the first equation of (2),

bN

(
1− N

K

)
− (γS + c)N − µ1N = 0,

⇐⇒ N(b− N

K
− γS − c− µ1) = 0,

⇐⇒ N(B − N

K
− γS) = 0, where B = b− c− µ1.

Therefore N = 0 or B =
N

K
+ γS. By feasibility condition of the model (1), we

shall assume B > 0.
We need to handle each sign of A case by case.

Case 1. Suppose A = 0.

Then the model (1) has one positive equilibrium E1 = (N∗
1 , T

∗
1 , S

∗
1 )

=

(
µ2µ3KB

bµ2µ3 +Kγα2ωc
,

βµ2µ3cK
2B2

(bµ2µ3 +Kγα2ωc)2
+

µ3α2cKB

bµ2µ3 +Kγα2ωc
,

wα2cKB

bµ2µ3 +Kγα2ωc

)
.
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Case 2. Suppose A 6= 0.

There are two equilibria E2 and E3.

E2 = (N∗
2 , T

∗
2 , S

∗
2 ) =

(
P

2bA
,

βP 2α2c

2bA2(P + 2bµ2µ3)
+

µ3α2cP

A(P + 2bµ2µ3)
,

ωα2cP

A(P + 2bµ2µ3)

)
,

E3 = (N∗
3 , T

∗
3 , S

∗
3 ) =

(
F

2bA
,

βF 2α2c

2bA2(F + 2bµ2µ3)
+

µ3α2cF

A(F + 2bµ2µ3)
,

ωα2cF

A(F + 2bµ2µ3)

)
,

where P = H +
√
H2 + 4bKABµ2µ3, F = H −

√
H2 + 4bKABµ2µ3.

If 0 < F+2bµ2µ3 and 0 < P+2bµ2µ3, then the model (1) has two positive equi-
libria. Otherwise the model (1) has one positive equilibrium. But F + 2bµ2µ3

is always negative value. Suppose 0 < F + 2bµ2µ3. Then,

0 < F + 2bµ2µ3,

0 < H −
√
H2 + 4bKABµ2µ3 + 2bµ2µ3,where F = H −

√
H2 + 4bKABµ2µ3,√

H2 + 4bKABµ2µ3 < H + 2bµ2µ3,

H2 + 4bKABµ2µ3 < H2 + 4Hbµ2µ3 + (2bµ2µ3)2,

4bKABµ2µ3 < 4Hbµ2µ3 + (2bµ2µ3)2,

0 < 4bµ2µ3(H + bµ2µ3 −KAB),

0 < 4bµ2µ3(ABK − bµ2µ3 −Kγα2ωc+ bµ2µ3 −KAB,
where H = ABK − bµ2µ3 −Kγα2ωc,

0 < 4bµ2µ3(−Kγα2ωc),

0 < −4bµ2µ3Kγα2ωc.

It’s contradiction of the assumption. And it’s similar to prove that 0 < P +
2bµ2µ3 is always true.
Since F + 2bµ2µ3 < 0 and 0 < P + 2bµ2µ3, E3 is a negative equilibrium. And
the model (1) has one positive equilibrium E2.

In summary, we have two kinds of positive equilibria as follows.

Theorem 3.1. (i) If A = 0, then the model (1) has one positive equilibrium
E1 = (N∗

1 , T
∗
1 , S

∗
1 ).

(ii) If A 6= 0, then the model (1) has one positive equilibrium E2 = (N∗
2 , T

∗
2 , S

∗
2 ).

3.2. Local Stability of Equilibria

Next, we analyze local stability of equilibria Ei, i = 1, 2.

Theorem 3.2. The positive equilibrium E1 = (N∗
1 , T

∗
1 , S

∗
1 ) is locally asymptot-

ically stable if (
b

K
N∗

1 + I)(
b

K
N∗

1 I − βS∗
1γN

∗
1 ) + Iµ2µ3 − γN∗

1ωα2c > 0, and

otherwise unstable.
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Proof. To show the local stability of the equilibrium E1, the Jacobian matrix
at Ei, i = 1, 2 for the model (1) is given by

J(Ei) =

b−
2b

K
N∗

i − γS∗
i − c− µ1 0 −γN∗

i

α1γS
∗
i + α2c −µ2 α1γN

∗
i

−βS∗
i ω −βN∗

i − µ3

 .

The characteristic polynomial of the matrix J(Ei) is

det (J(Ei)− λI) = λ3 + a1λ
2 + a2λ+ a3, (3)

where

a1 = −(b− 2b

K
N∗

i − γS∗
i − c− µ1 − µ2 − βN∗

i − µ3),

a2 = (b− 2b

K
N∗

i − γS∗
i − c− µ1)(−µ2) + (b− 2b

K
N∗

i − γS∗
i − c− µ1)

(−βN∗
i − µ3)− (−γN∗

i )(−βS∗
i ) + (−µ2)(−βN∗

i − µ3)− (α1γN
∗
i ω),

a3 = −(b− 2b

K
N∗

i − γS∗
i − c− µ1){(−µ2)(−βN∗

i − µ3)− (α1γN
∗
i ω)}

−(−γN∗
i ){ω(α1γS

∗
i + α2c)− (−µ2)(−βS∗

i )}.

Put I = µ2 + βN∗
1 + µ3. Then we get that

a1 =
b

K
N∗

i + I,

a2 =
b

K
N∗

i I +N∗
i A− βS∗

i γN
∗
i ,

a3 =
b

K
N∗

i (µ2µ3 +N∗
i A) + γN∗

i (ωα2c− S∗
i A).

Then

a1 =
b

K
N∗

1 + µ2 + βN∗
1 + µ3 > 0,

and since A = 0, we obtain that

a3 =
b

K
N∗

1µ2µ3 + γN∗
1ωα2c > 0,

a1a2 − a3 = (
b

K
N∗

1 + I)(
b

K
N∗

1 I + µ2µ3 − βS∗
1γN

∗
1 )− (

b

K
N∗

1µ2µ3 + γN∗
1ωα2c)

= (
b

K
N∗

1 + I)(
b

K
N∗

1 I − βS∗
1γN

∗
1 ) + Iµ2µ3 − γN∗

1ωα2c.

Thus a1 > 0, a3 > 0 and a1a2 > a3. By the Routh-Hurwitz Criteria, the
positive equilibrium E1 is locally asymptotically stable. �

Example 1. b = 0.8, c = 0.3177 µ1 = 0.32, µ2 = 0.58 β = 0.02, α1 = 0.58,
ω = 0.1, γ = 0.2, α2 = 0.68, K = 3500, µ3 = 0.5, then a1 = 1.2970 >
0, a3 = 0.2261 > 0 and a1a2 − a3 = 0.1097 > 0. Hence, from Theorem
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3.2 the equilibrium E1 = (10.7287, 6.5182, 0.7992) of the model (1) is locally
asymptotically stable.

Theorem 3.3. The positive equilibrium E2 = (N∗
2 , T

∗
2 , S

∗
2 ) is locally asymptot-

ically stable if

(i)
b

K
N∗

2 (µ2µ3 +N∗
2A) + γN∗

2 (ωα2c− S∗
2A) > 0,

(ii)(
b

K
N∗

2 + I)(
b

K
N∗

2 I − βS∗
2γN

∗
2 ) + I(µ2µ3 +N∗

2A)− γN∗
2 (ωα2c−S∗

2A)} > 0,

and otherwise unstable.

Proof. Since A 6= 0, it follows from (3) that

a3 =
b

K
N∗

2 (µ2µ3 +N∗
2A) + γN∗

2 (ωα2c− S∗
2A).

And put I = µ2 + βN∗
2 + µ3,

a1a2 − a3 = (
b

K
N∗

2 + I)(
b

K
N∗

2 I +N∗
2A+ µ2µ3 − βS∗

2γN
∗
2 )

− { b
K
N∗

2 (µ2µ3 +N∗
2A) + γN∗

2 (ωα2c− S∗
2A)}

= (
b

K
N∗

2 + I)(
b

K
N∗

2 I − βS∗
2γN

∗
2 ) + I(µ2µ3 +N∗

2A)

− γN∗
2 (ωα2c− S∗

2A).

Thus a1 > 0, a3 > 0 and a1a2 > a3. By the Routh-Hurwitz Criteria, the
positive equilibrium E2 is locally asymptotically stable. �

3.3. Global Stability of Equilibria

Theorem 3.4. If the equilibrium Ei(i = 1, 2) exists, then it is globally asymp-
totically stable provided the following conditions are satisfied in B,

(i)(γ + βS∗
i )2 <

b

K
µ3,

(ii)(α2γS
∗
i + α2c)

2 <
b

K
µ2,

(iii)(α1γK + ω)2 < µ2µ3.

Proof. Consider the positive definite function about Ei,

V =

(
N −N∗

i −N∗
i ln

N

N∗
i

)
+

1

2
(T − T ∗

i ) +
1

2
(S − S∗

i ).

The derivative of V along the solution of the system (1) can be written as,

dV

dt
=

(N −N∗
i )

N

dN

dt
+ (T − T ∗

i )
dT

dt
+ (S − S∗

i )
dS

dt
.
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After some algebraic calculations we get,

dV

dt
=− b

K
(N −N∗

i )2 − µ2(T − T ∗
i )2 − (βN + µ3 + µ3)(S − S∗

i )2

+ (α1γS
∗
i + α2c)(N −N∗

i )(T − T ∗
i ) + (α1γN + ω)(T − T ∗

i )(S − S∗
i )

− (γ + βS∗
i )(S − S∗

i )(N −N∗
i ).

Thus, for dV/dt to be negative definite the following sufficient conditions
must be satisfied,

(γ + βS∗
i )2 <

b

K
µ3, (4)

(α2γS
∗
i + α2c)

2 <
b

K
µ2, (5)

(α1γk + ω)2 < µ2µ3. (6)

Under conditions (4),(5) and (6), dV/dt will be negative definite showing that
V is a Lyapunov function with respect to Ei, whose domain contains B. �

Example 2. Let b = 0.8, c = 0.04 µ1 = 0.04, µ2 = 0.4 β = 0.01, α1 =
0.000174, ω = 0.01, γ = 0.00174, α2 = 0.1, K = 14600, µ3 = 0.5. Hence, from
Theorem 3.4 the equilibrium E1 = (13140, 130.1376, 0.01) of the model (1) is
globally asymptotically stable.

4. Numerical Simulations

In this section, we will verify the proposed by doing some simulations. We
carried out simulations using MATLAB. In order to have an understanding of
the detailed dynamics of the model comprising of three different compartments,
we do numerical simulations of the model (1).

Parameter Value Parameter Value
b 1 K 14600
γ 0.0174 c 0.04
α1 0.0174 α2 0.1
ω 0.5 β 0.015
µ1 0.04 µ2 0.04
µ3 0.11

Table 2. Values of parameters for the model (1).

For the purpose numerical values of the model parameters are standard-
ized based on available clinical date, reflections from analytical solutions of the
model. Another option is to use a logarithmic scale. The model parameters, as
standardized are given in Table 2[15]. Initial values of the variables are chosen
as N(0) = 2790, T (0) = 1000, S(0) = 50.
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Figure 2. The dynamics of model (1). Parameters are as in
Table 2.

A numerical simulation in Figure 3 illustrates the dynamics of model (1),
when the conditions of locally asymptotically stable(Theorem 3.2) are satisfied.
One thing noticeably in Figure 2 is the timing of extremum, that is, valleys at
the beginning. That means that cytokines S help differentiation of T cell.

One clinical feature of IBD is that proinflammatory cytokines is upregulated,
unlike normal person’s cytokines level. The best way to treat IBD is to reduce
the level of cytokines since the exact cause of IBD is unknown. If the factor
which makes cytokines increase is figured out, we can suggest another way to
treat IBD.

Numerical parameter sensitivity analysis show the greatest effect parameter
on model result. The method is that changing each of the model parameter by
±25%. And whenever we try simulation, all parameter fixed expect only one
parameter. The parameters are satisfied condition of local stable. In Figure
3, we plot the percent change in concentration of cytokine. We can appreciate
what parameter to be more sensitive than other parameters. The parameter ω,
the rate of S production from T influence the level of cytokines S. We expect
if the treatment can control the ω, the rate of S production from T , then that
is the best way for helping to relieve IBD.

5. Conclusions

In the analytical study, we presented the model (1) by using an ordinary
differential equation and we focus on the qualitative aspects within the model
(1).

We observed that the solutions of the model (1) with the initial values
(N(t0), T (t0), S(t0)) exist and unique, and the solutions of the dynamical vari-
ables N(naive T cell), T (Helper T cell), S(Cytokines are secreted by T) holds
in the positive where we assume all the model parameters are positive.

In this model (1), there were two equilibria E1 and E2 when the condition
is satisfied each A = 0 and A 6= 0. We found the condition under which
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Figure 3. Numerical sensitivity analysis.

the solution of the model (1) becomes locally stable each equilibrium E1 and
E2. In Section 4, to understand how different model parameters control the
dynamical behavior of the model (1), we changed their parameters.In Figure 4,
we saw that dynamics of S gets progressively upgraded with the increase the
rate of S production from T , ω. So we expect that ω is an important factor in
understanding pathogenesis of IBD. However, the change of b, the growth rate
of Naive T cell or µ3, the death rate of S do not influence.
In Figure 4, we saw that dynamics of S gets progressively upgraded with the
increase the rate of S production from T , ω. So we expect that ω is an important
factor in understanding pathogenesis of IBD. However, the change of b, the
growth rate of Naive T cell or µ3, the death rate of S do not influence.

We present the following Figure 4 to support the future work. We provide
the same stimulus to Naive T cells(see Figure 4). The times series of Figure
4(a) shows an oscillation of the concentration of cytokines S, which slows down
and eventually stops. But the Figure 4(b) is not. This means that the values of
ω is sensitive to stimulus. We’ll be interesting to see how results correlate with
IBD. In further work, we will find sensitive parameters to stimulus and present
cause of IBD and another treatment strategy.



A MATHEMATICAL MODEL OF IMMUNE-MEDIATED DISORDER IN IBD 151
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[Dynamics of S when ω = 0.5]
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Figure 4. Dynamics of compartment S changing ω when
Naive T cell(N) are stimulated. Other parameters are as in
Table 2.
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