DOI QR코드

DOI QR Code

Synthesis and Non-Isothermal Crystallization Behaviors of Maleic Anhydride onto High Density Polyethylene

  • Ahn, Youngjun (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeon, Jong Hyuk (Department of Chemical Engineering, Kwangwoon University) ;
  • Baek, Chul Seoung (Department of Chemical Engineering, Kwangwoon University) ;
  • Yu, Young Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Thenepalli, Thriveni (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Ji Whan (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Han, Choon (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2015.12.16
  • Accepted : 2016.01.13
  • Published : 2016.01.31

Abstract

The grafting reaction for maleic anhydride (MA) onto high density polyethylene (HDPE) was investigated from solution process with initiators. The chemical modification of neat HDPE was carried out with various contents of MA (3-21 wt.%) and initiator (0.2-1 wt.%) at different temperature ($80-130^{\circ}C$). The grafting degree was obtained from the titration and the highest grafting degree was 3.1%. The grafting degree increased as the content of MA and initiator increased, however, the highest grafting degree was demonstrated for a particular content of MA and initiator. In the non-isothermal crystallization kinetics, the Ozawa model was unsuitable method to investigate the crystallization behavior of MA onto HDPE, whereas the Avrami and Liu models found effective. The crystallization rate was accelerated as the cooling rate increased, but postponed by combination of MA onto neat HDPE backbone.

Keywords

References

  1. D. C. Clark,W. E. Baker,and R. A. Whitney,"Peroxide-Initiated Comonomer Grafting of Styrene and Maleic Anhydride onto Polyethylene: Effect of Polyethylene Microstructure," J. Appl. Polym. Sci.,79 [1] 96-107 (2001). https://doi.org/10.1002/1097-4628(20010103)79:1<96::AID-APP120>3.0.CO;2-X
  2. T. C. Chung,"Synthesis of Functional Polyolefin Copolymers with Graft and Block Structures," Prog. Polym. Sci., 27 [1] 39-85 (2002). https://doi.org/10.1016/S0079-6700(01)00038-7
  3. Y. Pietrasanta,J. J. Robin,N. Torres,and B. Boutevin, "Reactive Compatibilization of HDPE/PET Blends by Glycidyl Methacrylate Functionalizaed Polyolefins," Macromol. Chem. Phys.,200 [1] 142-49 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1<142::AID-MACP142>3.0.CO;2-W
  4. P. Ghosh and D. Dev,"Reactive Processing of Polyethylene: Effect of Peroxide-Induced Graft Copolymerization of Some Acrylic Monomers on Polymer Structure Melt Rheology and Relaxation Behavior," Eur. Polym. J.,34 [10] 1539-47 (1998). https://doi.org/10.1016/S0014-3057(97)00278-4
  5. F. Pazzagli and M. Pracella,"Reactive Compatibilization of Polyolefin/PET Blends by Melt Grafting with Glycidyl Methacrylate," Macromol. Symp.,149 225-30 (2000).
  6. W. Chen and B. Qu,"Structural Characteristics and Thermal Properties of PE-g-MA/MgAl-LDH Exfoliation Nanocomposites Synthesized by Solution Intercalation," Chem. Mater.,15 [16] 3208-13 (2003). https://doi.org/10.1021/cm030044h
  7. D. Se'meril,E. Passaglia,C. Bianchini,M. Davies,H. Miller,and F. Ciardelli,"Reactive Blending of Polyamides with Different Carbonyl Containing Olefin Polymers," Macromol. Mater. Eng.,288 [6] 475-83 (2003). https://doi.org/10.1002/mame.200390044
  8. A. Guiu and M. E. R. Shanahan,"Adhesion of Grafted Polyethylene to an Ethylene/Vinyl Alcohol Copolymer," J. Polym. Sci.,Part B: Polym. Phys.,39 [22] 2843-51 (2001). https://doi.org/10.1002/polb.10047
  9. T. Kokubo,M. Uenoyama,H. M. Kim,M. Minoda,T. Miyamoto, and T. Nakamura,"Apatite Formation on Polyethylene Modified with Silanols by Grafting of Vinyltrimethoxysilane and Subsequent Hydrolysis," J. Korean Ceram. Soc.,5 [3] 265-69 (1999).
  10. H. Zhai,W. Xu,H. Guo,Z. Zhou,S. Shen,and Q. Song, "Preparation and Characterization of PE and PE-g-MAH/ Montmorillonite Nanocomposites," Eur. Polym. J.,40 [11] 2539-45 (2004). https://doi.org/10.1016/j.eurpolymj.2004.07.009
  11. G. Wang,P. Jiang,Z. Zhu,and J. Yin,"Structure-Property Relationships of LLDPE-Highly Filled with Aluminum Hydroxide," J. Appl. Polym. Sci.,85 [12] 2485-90 (2002). https://doi.org/10.1002/app.10537
  12. P. Ghosh,B. Chattopadhyay,and A. K. Sen,"Modification of Low Density Polyethylene (LDPE) by Graft Copolymerization with Some Acrylic Monomers," Polymer,39 [1] 193-201 (1998). https://doi.org/10.1016/S0032-3861(97)00253-X
  13. J. P. Deng,W. T. Yang,and B. Ranby,"Melt-Photografting Polymerization of Maleic Anhydride onto LDPE Film," Eur. Polym. J.,38 [7] 1449-55 (2002). https://doi.org/10.1016/S0014-3057(02)00004-6
  14. J. Jancar,"Influence of the Filler Particle Shape on the Elastic Moduli of PP/$CaCO_3$ and PP/$Mg(OH)_2$ Composites," J. Mater. Sci.,24 [11] 4268-74 (1989). https://doi.org/10.1007/BF00544498
  15. J. S. Lin,E. Y. Sheu,and Y. H. R. Jois,"The Effect of Extruder Temperature and Maleated Polypropylene on Polypropylene/Nylon-6,6 Blend: A Small Angle X-ray Scattering Study," J. Appl. Polym. Sci.,55 [5] 655-66 (1995). https://doi.org/10.1002/app.1995.070550501
  16. J. Y. Kim,H. S. Park,and S. H. Kim,"Unique Nucleation of Multi-Walled Carbon Nanotube and Poly(Ethylene 2,6-naphthalate) Nanocomposites during Non-Isothermal Crystallization," Polymer,47 [4] 1379-89 (2006). https://doi.org/10.1016/j.polymer.2005.12.042
  17. M. Galante,L. M. Alamo,and R. G. Alamo,"The Crystallization of Blends of Different Types of Polyehtylene: The Role of Crystallization Conditions," Polymer,39 [21] 5105-19 (1998). https://doi.org/10.1016/S0032-3861(97)10162-8
  18. Z. G. Wang,B. S. Hsiao,E. B. Sirota,and S. Srinivas,"A Simultaneous Small- and Wide-Angle X-ray Scattering Study of the Early Stages of Melt Crystallization in Polyethylene," Polymer,41 [25] 8825-32 (2000). https://doi.org/10.1016/S0032-3861(00)00225-1
  19. G. Reiter and G. R. Strobl, Progress in Understanding of Polymer Crystallization; Vol. 714, pp. 179-200,Springer-Verlag, Berlin, 2007.
  20. L. Mandelkern,Crystallization of Polymer; Vol. 2,pp. 19-40,New York,Mc-Graw Hill,1964.
  21. B. Wunderlich, Macromolecular Physics; Vol. 1, pp. 1-69, New York, Academic Press,1973.
  22. M. L. D. Lorenzo and C. Silvestre, "Non-Isothermal Crystallization of Polymers," Prog. Polym. Sci., 24 [6] 917-50 (1999). https://doi.org/10.1016/S0079-6700(99)00019-2
  23. K. Nakamura,T. Watanabe,K. Katayama,and T. Amano, "Some Aspects of Non-Isothermal Crystallization of Polymers. I. Relationship between Crystallization Temperature, Crystallinity, and Cooling Conditions," J. Appl. Polym. Sci.,16 [5] 1077-91 (1972). https://doi.org/10.1002/app.1972.070160503
  24. K. Nakamura, K. Katayama, and T. Amano,"Some Aspects of Nonisothermal Crystallization of Polymers. II. Consideration of the Isokinetic Condition," J. Appl. Polym. Sci., 17 [4] 1031-41 (1973). https://doi.org/10.1002/app.1973.070170404
  25. L. Minkova and M. Mihailov,"Kinetics of Nonisothermal Crystallization and Melting of Normal High Density and Ultra-High Molecular Weight Polyethylene Blends," Colloid Polym. Sci.,267 [7] 577-82 (1989). https://doi.org/10.1007/BF01410433
  26. L. Mandelkern,M. Glotin,and R. A. Benson,"Supermolecular Structure and Thermodynamic Properties of Linear and Branched Polyethylenes under Rapid Crystallization Conditions," Macromolecules,14 [1] 22-34 (1981). https://doi.org/10.1021/ma50002a004
  27. M. Eder and A. Wlochowicz,"Kinetics of Non-Isothermal Crystallization of Polyethylene and Polypropylene," Polymer, 24 [12] 1593-95 (1983). https://doi.org/10.1016/0032-3861(83)90177-5
  28. A. K. Gupta,S. K. Rana,and B. L. Deopura,"Crystallization Kinetics of High-Density Polyethylene/Linear Low-Density Polyethylene Blend," J. Appl. Polym. Sci.,51 [2] 231-39 (1994). https://doi.org/10.1002/app.1994.070510204
  29. P. Supaphol and J. E. Spruiell,"Nonisothermal Bulk Crystallization Studies of High Density Polyethylene Using Light Depolarizing Microscopy," J. Polym. Sci.,Part B: Polym. Phys.,36 681-92 (1998). https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<681::AID-POLB14>3.0.CO;2-B
  30. M. A. Islam,I. A. Hussein,and M. Atiqullah,"Effects of Branching Characteristics and Copolymer Composition Distribution on Non-Isothermal Crystallization Kinetics of Metallocene LLDPEs," Eur. Polym. J.,43 [2] 599-610 (2007). https://doi.org/10.1016/j.eurpolymj.2006.10.019
  31. I. A. Hussein,"Nonisothermal Crystallization Kinetics of Linear Metallocene Polyethylenes," J. Appl. Polym. Sci., 107 [5] 2802-9 (2008). https://doi.org/10.1002/app.27392
  32. X. He,S. Zheng,G. Huang,and Y. Rong,"Solution Grafting of Maleic Anhydride on Low-Density Polyethylene: Effect on Crystallization Behavior," J. Macromol. Sci.,Phys.,52 [9] 1265-82 (2013). https://doi.org/10.1080/00222348.2013.764217
  33. S. H. Lee,B. K. Ryu,and H. C. Park,"Crystallization Behavior of $CaO{\cdot}Al_2O_3{\cdot}2SiO_2$ Glass with Kinetic Parameters," J. Korean Ceram. Soc.,31 [12] 1545-51 (1994).
  34. S. N. Sathe,G. S. Srinivasa Rao,and S. Devi,"Grafting of Maleic Anhydride onto Polypropylene: Synthesis and Characterization," J. Appl. Polym. Sci.,53 [2] 239-45 (1994). https://doi.org/10.1002/app.1994.070530212
  35. Z. Aimin and L. Chao,"Chemical Initiation Mechanism of Maleic Anhydride Grafted onto Styrene-Butadiene-Styrene Block Copolymer," Eur. Polym. J.,39 [6] 1291-95 (2003). https://doi.org/10.1016/S0014-3057(02)00371-3
  36. G. Moad,"The Synthesis of Polyolefins Graft Copolymers by Reactive Extrusion," Prog. Polym. Sci.,24 [1] 81-142 (1999). https://doi.org/10.1016/S0079-6700(98)00017-3
  37. K. J. Ganzeveld and L. P. B. M. Janssen,"The Grafting of Maleic Anhydride on High Density Polyethylene in an Extruder," Polym. Eng. Sci.,32 [7] 467-74 (1992). https://doi.org/10.1002/pen.760320703
  38. M. Jamshidian,E. A. Tehrany,M. Imran,M. Jacquot,and S. Desobry,"Poly-Lactic Acid: Production,Applications, Nanocomposites,and Release Studies," Compr. Rev. Food Sci. Food Saf.,9 [5] 552-71 (2010). https://doi.org/10.1111/j.1541-4337.2010.00126.x
  39. Y. Shen,R. Qi,Q. Liu,Y. Wang,Y. Mao,and J. Yu,"Grafting of Maleic Anhydride onto Polyethylene through a Green Chemistry Approach," J. Appl. Polym. Sci.,110 [4] 2261-66 (2008). https://doi.org/10.1002/app.28789
  40. Y. Shen,R. Qi,Q. Liu,and C. Zhou,"Solvothermal Preparation and Characterization of Maleic Anhydride Grafting High Density Polyethylene Copolymer," J. Appl. Polym. Sci.,104 [5] 3443-52 (2007). https://doi.org/10.1002/app.26033
  41. K. I. Ku Marsilla and C. J. R. Verbeek,"Modification of Poly(Lactic Acid) Using Itaconic Anhydride by Reactive Extrusion," Eur. Polym. J.,67 213-23 (2015). https://doi.org/10.1016/j.eurpolymj.2015.03.054
  42. J. Peyroux,M. Dubois,E. Tomasella,L. Frezet,A. P. Kharitonov,and D. Flahaut,"Enchancement of Surface Properties on Low Density Polyethylene Packaging Films Using Various Fluorination Routes," Eur. Polym. J.,66 18-32 (2015). https://doi.org/10.1016/j.eurpolymj.2014.12.040
  43. D. Belekian,E. Beyou,P. Chaumont,P. Cassagnau,J. J. Flat,S. Quinebeche,Y. Guillaneuf,and D. Gigmes,"Effect of Nitroxyl-Based Radicals on the Melt Radical Grafting of Maleic Anhydride onto Polyethylene in Presence of a Peroxide," Eur. Polym. J.,66 342-51 (2015). https://doi.org/10.1016/j.eurpolymj.2015.02.012
  44. G. Barbaro,M. R. Galdi,L. D. Maio,and L. Incarnato, "Effect of BOPET Film Surface Treatments on Adhesion Performance of Biodegradable Coatings for Packaging Applications," Eur. Polym. J.,68 80-9 (2015). https://doi.org/10.1016/j.eurpolymj.2015.04.027
  45. G. Samay,T. Nagy,and J. L. White,"Grafting Maleic Anhydride and Comononers onto Polyethylene," J. Appl. Polym. Sci.,56 [11] 1423-33 (1995). https://doi.org/10.1002/app.1995.070561105
  46. H. T. Kozel and R. T. Kazmierczak,"A Rapid Fourier Transform Infrared (FTIR) Method for the Determination of grafted Maleate on Polyolefins," SPE. ANTEC Tech. Papers,37 1570-73 (1991).
  47. N. G. Gaylord and R. Mehta,"Peroxide-Catalyzed Grafting of Maleic Anhydride onto Molten Polyethylene in the Presence of Polar Organic Compounds," J. Polym. Sci.,Part A: Polym. Chem.,26 [4] 1189-98 (1988). https://doi.org/10.1002/pola.1988.080260419
  48. L. Yang,F. Zhang,T. Endo,and T. Hirotsu,"Microstructure of Maleic Anhydride Grafted Polyethylene by High Resolution Solution-State NMR and FTIR Spectroscopy," Macromolecules,36 [13] 4709-18 (2003). https://doi.org/10.1021/ma020527r
  49. B. Wunderlich and C. M. Cormier,"Heat of Fusion of Polyethylene," J Polym Sci,Part A: Polym Chem.,5 [5] 987-88 (1967).
  50. W. Xu,M. Ge,and P. He,"Nonisothermal Crystallization Kinetics of Polypropylene/Montmorillonite Nanocomposites," J. Polym. Sci.,Part B: Polym. Phys.,40 [5] 408-14 (2002). https://doi.org/10.1002/polb.10101
  51. J. N. Hay and M. Sabir,"Crystallization Kinetics of High Polymers. Polyethylene Oxide Part II," Polymer,10 203-11 (1969). https://doi.org/10.1016/0032-3861(69)90031-7
  52. J. N. Hay,P. A. Fitzgerald,and M. Wiles,"Use of Differential Scanning Calorimetry to Study Polymer Crystallization Kinetics," Polymer,17 [11] 1015-18 (1976). https://doi.org/10.1016/0032-3861(76)90177-4
  53. P. Cebe and S. D. Hong,"Crystallization Behaviour of Poly (Ether-Ether-Ketone)," Polymer,27 [8] 1183-92 (1986). https://doi.org/10.1016/0032-3861(86)90006-6
  54. T. Ozawa,"Kinetics of Non-Isothermal Crystallization," Polymer,12 [3] 150-58 (1971). https://doi.org/10.1016/0032-3861(71)90041-3
  55. C. Jiang,D. Wang,M. Zhang,P. Li,and S. Zhao,"Effect of Highly Filled Ferrites on Non-Isothermal Crystallization Behavior of Polyamide 6 Bonded Ferrites," Eur. Polym. J., 46 [11] 2206-15 (2010). https://doi.org/10.1016/j.eurpolymj.2010.05.002
  56. A. Hammami,J. E. Spruiell,and A. K. Mehrotra,"Quiescent Nonisothermal Crystallization Kinetics of Isotactic Polypropylenes," Polym. Eng. Sci.,35 [10] 797-804 (1995). https://doi.org/10.1002/pen.760351002
  57. L. C. Lopez and G. L. Wilkes,"Non-Isothermal Crystallization Kinetics of Poly(p-Phenylene Sulphide)," Polymer,30 [5] 882-87 (1989). https://doi.org/10.1016/0032-3861(89)90186-9
  58. P. Sajkiewicz,L. Carpaneto,and A. Wasiak,"Application of the Ozawa Model to Non-Isothermal Crystallization of Poly(Ethylene Terephthalate)," Polymer,42 [12] 5365-70 (2001). https://doi.org/10.1016/S0032-3861(00)00934-4
  59. M. L. Addonizio,E. Martuscelli,and C. Silvestre,"Study of the Non-Isothermal Crystallization of Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) Blends," Polymer,28 [2] 183-88 (1987). https://doi.org/10.1016/0032-3861(87)90401-0
  60. M. Joshi and B. S. Butola,"Studies on Nonisothermal Crystallization of HDPE/POSS Nanocomposites," Polymer, 45 [14] 4953-68 (2004). https://doi.org/10.1016/j.polymer.2004.04.057
  61. P. Zou,S. Tang,Z. Fu,and H. Xiong,"Isothermal and Non-Isothermal Crystallization Kinetics of Modified Rape Straw Flour/High-Density Polyethylene Composites," Int. J. Therm. Sci.,48 [4] 837-46 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.06.010
  62. A. Jeziorny,"Parameters Characterizing the Kinetics of the Non-Isothermal Crystallization of Poly(Ethylene Terephthalate) Determinde by d.s.c," Polymer,19 [10] 1142-44 (1978). https://doi.org/10.1016/0032-3861(78)90060-5
  63. T. Liu,Z. Mo,S. Wang,and H. Zhang,"Nonisothrmal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone)," Polym. Eng. Sci.,37 [3] 568-75 (1997). https://doi.org/10.1002/pen.11700
  64. S. S. Ray,J. Bandyopadhyay,and M. Bousmina,"Influence of Degree of Intercalation on the Crystal Growth Kinetics of Poly[(Butylene Succinate)-Co-Adipate Nanocomposites]," Eur. Polym. J.,44 [10] 3133-45 (2008). https://doi.org/10.1016/j.eurpolymj.2008.07.035
  65. S. Nandi and A. K. Ghosh,"Crystallization Kinetics of Impact Modified Polypropylene," J. Polym. Res.,14 [5] 387-96 (2007). https://doi.org/10.1007/s10965-007-9121-y
  66. L. Guo,F. Chen,Y. Zhou,X. Liu,and W. Xu,"The Influence of Interface and Thermal Conductivity of Filler on the Nonisothermal Crystallization Kinetics of Polypropylene/Natural Protein Fiber Composites," J. Compos. Part B,68 300-9 (2015). https://doi.org/10.1016/j.compositesb.2014.09.004
  67. Y. Lin,H. Chen,C-M. Chan,and J. Wu,"High Impact Toughness Polypropylene/$CaCO_3$ Nanocomposites and the Toughening Mechanism," Macromolecules,41 [23] 9204-13 (2008). https://doi.org/10.1021/ma801095d

Cited by

  1. Calorimetric and rheokinetic analyses merged to capture crystallization kinetics in polyamide/clay nanocomposites: Revisiting predictability of models vol.135, pp.25, 2018, https://doi.org/10.1002/app.46364