DOI QR코드

DOI QR Code

Active Sonar Target Detection Using Fractional Fourier Transform

Fractional 푸리에 변환을 이용한 능동소나 표적탐지

  • Baek, Jongdae (LG Electronics) ;
  • Seok, Jongwon (Department of Information and Communication, Changwon National University) ;
  • Bae, Keunsung (School of Electronics Engineering, Kyungpook National University)
  • Received : 2015.09.30
  • Accepted : 2015.11.02
  • Published : 2016.01.31

Abstract

Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target detection technique has been considered as a difficult technique. In this paper, we describe the basic concept of Fractional Fourier transform and optimal transform order. Then we analyze the relationship between time-frequency characteristics of an LFM signal and its spectrum using Fractional Fourier transform. Based on the analysis results, we present active sonar target detection method. To verify the performance of proposed methods, we compared the results with conventional FFT-based matched filter. The experimental results demonstrate the superiority of the proposed method compared to the conventional method in the aspect of AUC(Area Under the ROC Curve).

수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 본 논문에서는 Fractional 푸리에 변환의 기본 개념과 최적 변환 차수에 대해 설명하고, 이를 이용하여 LFM 신호의 시간-주파수 특성과 스펙트럼 사이의 관계를 분석한다. 그리고 이러한 분석결과를 바탕으로 능동소나 표적 탐지 기법을 제안한다. 제안된 방법의 성능을 검증하기 위해, 기존의 FFT를 이용한 정합필터와 성능을 비교하였다. AUC(Area Under the ROC Curve)의 측면에서 볼 때 제안된 방식이 기존의 방법보다 성능이 우수한 실험결과를 보였다.

Keywords

References

  1. R. Jacob, Development of Time-Frequency Techniques for Sonar Applications, Ph. D. dissertation. Naval Physical and Oceanographic Laboratory, 2010.
  2. G. B. Giannakis, "Signal detection and classification using matched filtering and higher order statistics," IEEE Trans. ASSP, vol. 38, pp. 1284-1296, 1990. https://doi.org/10.1109/29.57557
  3. V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," IMA Journal of Applied Mathematics, vol. 25, no. 3, pp. 241-265, 1980. https://doi.org/10.1093/imamat/25.3.241
  4. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, John Wiley, Chichester, NewYork, USA, 2001.
  5. C. Capus and K. Brown, "Fractional Fourier transform of the Gaussian and fractional domain signal support," IEE Proceedings-Vision, Image, and Signal Processing, vol. 150, no. 2, pp. 99-106, 2003. https://doi.org/10.1049/ip-vis:20030313
  6. A. W. Lohmann et el, "Some important fractional transformations for signal processing," Opt. Commun., vol. 125, pp. 18-20, 1996. https://doi.org/10.1016/0030-4018(95)00748-2
  7. V. Katkovnik, "A new form of the Fourier transform for time-varying frequency estimation," Signal Processing, vol. 47, no. 2, pp. 187-200, 1995. https://doi.org/10.1016/0165-1684(95)00107-7
  8. H. M. Ozaktas, B. Barshan and D. Mendlovic, "Convolution and filtering in fractional Fourier domains," Optical Review, vol. 1, no. 1, pp. 15-16, 1994. https://doi.org/10.1007/s10043-994-0015-5
  9. R Jacob, T Thomas and A. Unnikrishnan, "Applications of Fractional Fourier Transform in Sonar Signal Processing." IETE Journal of Research, vol. 55, pp. 16-27, 2014.
  10. J. Vargas-Rubio and B. Santhanam, "On the multi angle centered discrete fractional Fourier transform," IEEE Signal Processing Letters, vol. 12, pp. 273-276, 2005. https://doi.org/10.1109/LSP.2005.843762
  11. A. Capus and K. Brown, "Short-time fractional Fourier methods for the time-frequency representation of chirp signals," Journal of Acoustic Society of America, vol. 113, pp. 3253-3263, 2003. https://doi.org/10.1121/1.1570434
  12. I. S. Yetik and A. Nehorai, "Beamforming using the fractional Fourier transform," IEEE Trans. Signal Processing, vol. 51, pp. 1663-1668, 2003. https://doi.org/10.1109/TSP.2003.811223

Cited by

  1. DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별 vol.22, pp.3, 2016, https://doi.org/10.6109/jkiice.2018.22.3.418