DOI QR코드

DOI QR Code

수중 무인정 궤적 교란에 따른 SAS 방위해상도 영향에 대한 분석

Influences Analysis of SAS Azimuth Resolution on the UUV Trajectory Disturbances

  • Kim, Boo-il (Department of Interdisciplinary Program of Weapon Systems Engineering, Specialized Graduate School Science & Technology Convergence, Pukyong National University)
  • 투고 : 2015.11.03
  • 심사 : 2015.12.15
  • 발행 : 2016.01.31

초록

수중에서 운용되는 소형 무인정 탑재 능동 합성개구면소나는 외부에서 발생되는 수중환경의 영향으로 플렛품 진행시 여러 가지 궤적 교란이 발생하게 되고 개구면 합성처리에 있어서 많은 오차를 가져 온다. 본 논문에서는 진행현측방향으로 주기적 및 랜덤 궤적교란이 발생될 때 합성개구면 초점처리에 의한 위상차 부정합에 따른 방위해상도에 미치는 영향을 비교 분석하였다. 시뮬레이션 결과, 주기적 궤적교란은 발생 교란 크기가 $0.3{\lambda}$, 변동 주기가 $2L_{sa}$보다 커지면 허위표적이 발생되고 방위해상도가 매우 나빠지게 되며, 합성개구면처리에 의한 해저 소형물체 탐지성능은 플렛폼의 궤적변동 종류와 조건에 따라서 방위해상도에 많은 영향을 미치는 특성을 나타내었다.

Active synthetic aperture sonar on the small UUV is generated several trajectory disturbances under the influences of underwater environments, and causing a large error in the synthetic aperture processing. In this paper, we analyzed the effects of azimuth resolution for the phase mismatch of the synthetic aperture focus processing when the periodic or random trajectory disturbances was generated on the side direction. The simulation results show that ghost targets are generated and azimuth resolution is very deteriorated when disturbance amplitude is greater than $0.3{\lambda}$ and disturbance period is greater than $2L_{sa}$ in the periodic trajectory disturbances environments. And detection performance on the seabed small objects by the synthetic aperture processing is shown that there is a significant effects on the azimuth resolution depending on the types and conditions of the platform trajectory disturbance variations.

키워드

참고문헌

  1. X. Zhang, J. Tang, and H. Zhong, "Multireceiver correction for the chirp Scaling algorithm in synthetic aperture sonar", IEEE Journal of Oceanic Engineering, vol. 39, no. 3, pp. 472-481, July 2014. https://doi.org/10.1109/JOE.2013.2251809
  2. L. Haisen, X. Jian, and Z. Tian, "Study of multibeam synthetic aperture sonar line by line imaging algorithm", 2012 International Conference on Measurement and Control, pp. 273-277, 2012.
  3. T. O. Saebo, S. A. V. Synnes, and R. E. Hansen, "Wideband interferometry in synthetic aperture sonar", IEEE Transaction on Geoscience and Remote Sensing, vol. 51, no. 8, pp. 4450-4459, Aug. 2013. https://doi.org/10.1109/TGRS.2013.2244900
  4. M. P. Hayes, "Synthetic aperture sonar: a review of current status", IEEE Journal of Oceanic Engineering, vol. 34, pp. 207-217, 2009. https://doi.org/10.1109/JOE.2009.2020853
  5. R. E. Hansen, H. J. Callow, T. O. Saebo, and S. A. V. Synnes, "Challenges in seafloor imaging and mapping with synthetic aperture sonar", IEEE Transactions on geoscience and Remote Sensing, vol. 48, no. 10, pp. 3677-3687, Oct. 2011.
  6. R. E. Hansen, Introduction to synthetic aperture sonar, pp. 1-25, Available: http://www.intechopen.com
  7. J. E. Piper, K. W. Commander, E. I. Thorsos, and K. L. Williams, "Detection of buried targets using a synthetic aperture sonar", IEEE Journal of Oceanic Engineering, vol. 27, pp. 495-503, 2002. https://doi.org/10.1109/JOE.2002.1040933
  8. R. E. Hansen and S. Chapman, "Signal processing for AUV based interferometric synthetic aperture sonar", IEEE Xplore Digital Library, pp. 2438-2444, 2003.
  9. B. Jalving, K. Gade, O. K. Hagan, and K. Vestgard, "A toolbox of aiding techniques for the HUGIN AUV integrated inertial navigation system", In Proceeding of the MTS/IEEE Oceans Conference and Exhibition, San Diego, 2003.
  10. H. J. Callow, M. P. Hayes, and Peter T. Gough, "Motioncompensation improvement for widebeam, multiple-receiver SAS systems", IEEE Journal of Oceanic Engineering, vol. 34, pp. 262-268, 2009. https://doi.org/10.1109/JOE.2009.2014659
  11. R. S. H. Istepanian and M. Stojanovic, "Underwater acoustic digital signal processing and communication systems", Kluwer Academic Publishers, pp. 37-75, 2002.
  12. H. Schmaljohann and J. Groen, "Motion estimation for synthetic aperture sonars", 2012 EUSAR 9th European Conference on Synthetic Aperture Radar, Germany, pp. 78-81, April 2012.
  13. S. Zhu, J. Yue, and W. Jiang, "SAS autofocus based on phase gradient autofocus", 2011 4th International Workshop on Chaos-Fractals Theories and Applications, pp. 298-301, Oct. 2011.
  14. S. R. Silva, S. Cunha, A. Matos, and N. Cruz, "Sub-band processing of synthetic aperture sonar data", Proceeding of the OCEANS 2008 MTS/IEEE Conference, pp.1-8, 2008.
  15. J. E. Piper, R. Lim, E. I. Thorsos, and K. L. Williams, "Buried sphere detection using a synthetic aperture sonar", IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 485-494, Oct. 2009. https://doi.org/10.1109/JOE.2009.2030971

피인용 문헌

  1. 수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석 vol.21, pp.1, 2016, https://doi.org/10.6109/jkiice.2017.21.1.215
  2. 다중 수신기 DPC 처리에 의한 속도 교란 수중 무인체의 자동초점 위상 보상 vol.21, pp.10, 2016, https://doi.org/10.6109/jkiice.2017.21.10.1973