DOI QR코드

DOI QR Code

A Novel Multi-Function PV Micro-Inverter with an Optimized Harmonic Compensation Strategy

  • Zhu, Guofeng (College of Electronics and Information Engineering, Tongji University) ;
  • Mu, Longhua (College of Electronics and Information Engineering, Tongji University) ;
  • Yan, Junhua (College of Electronics and Information Engineering, Tongji University)
  • Received : 2016.01.26
  • Accepted : 2016.06.18
  • Published : 2016.11.20

Abstract

With the rapid development of clean energy, photovoltaic (PV) generation has been utilized in the harmonic compensation of power systems. This paper presents a novel multi-function PV micro-inverter with three stages (pseudo-two-stage). It can inject active power and compensate harmonic currents in the power grid at the same time. In order to keep the micro-inverter working under the maximum allowable output power, an optimized capacity limitation strategy is presented. Moreover, the harmonic compensation can be adjusted according to the customized requirements of power quality. Additionally, a phase shedding strategy in the DC/DC stage is introduced to improve the efficiency of parallel Boost converters in a wide range. Compared with existing capacity limitation methods, the proposed strategy shows better performance and energy efficiency. Simulations and experiments verify the feasibility of the micro-inverter and the effectiveness of the strategy.

Keywords

References

  1. International Energy Agency Photovoltaic Power Systems, (2015) Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 2014. www.iea-pvps.org, 2015.
  2. Y. H. Hu, W. P. Cao, W. D. Xiao, and B. Ji, "Three-port DC-DC converter for stand-alone photovoltaic systems," IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 3068-3076, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2331343
  3. F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi, and S. M. Niapour, "Modeling and control of a new three-input DC-DC boost converter for hybrid PV/FC/battery power system," IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2309-2324, May 2012. https://doi.org/10.1109/TPEL.2011.2172465
  4. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," IEEE Trans. Ind. Applicat., Vol. 41, No. 5, pp. 1292-1306, Sep. 2005. https://doi.org/10.1109/TIA.2005.853371
  5. M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, "Inverters for single-phase grid connected photovoltaic systems-an overview," in IEEE Power Electronics Specialists Conference (PESC), Vol. 4, pp. 1995-2000, Jun. 2002.
  6. B. Subudhi and R. Pradhan, "A comparative study on maximum power point tracking techniques for photovoltaic power systems," IEEE Trans. Sustain. Energy, Vol. 4, No. 1, pp. 89-98, Jan. 2013, https://doi.org/10.1109/TSTE.2012.2202294
  7. Y. H. Hu, B. Gao, X. G. Song, G. Y. Tian, K. J. Li, and X. N. He, "Photovoltaic fault detection using a parameter based model," Solar Energy, Vol. 96, pp. 96-102, Oct. 2013. https://doi.org/10.1016/j.solener.2013.07.004
  8. Y. H. Hu, W. P. Cao, J. D. Wu, B. Ji, and D. Holliday, "Thermography-based virtual MPPT scheme for improving PV energy efficiency at partial shading conditions," IEEE Trans. Power Electron., Vol. 29, No. 11, pp. 5667-5672, Jun. 2014. https://doi.org/10.1109/TPEL.2014.2325062
  9. R. H. Wills, F. E. Hall, S. J. Strong, and J. H. Wohlgemuth, "The AC photovoltaic module," in IEEE Photovoltaic Specialists Conference, pp. 1231-1234, May. 1996.
  10. T. Shimizu, K. Wada, and N. Nakamura, "A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system," in IEEE Power Electronics Specialists Conference (PESC), Vol. 3, pp. 1483-1488, Jun. 2002.
  11. Q. Li and P. Wolfs, "A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations," IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1320-1333, May, 2008. https://doi.org/10.1109/TPEL.2008.920883
  12. Y. Xue, K. C. Divya, G. Griepentrog, M. Liviu, S. Suresh, and M. Manjrekar, "Towards next generation photovoltaic inverters," in IEEE Energy Conversion Congress and Exposition (ECCE), pp.2467-2474, 2011.
  13. B. Jablonska, A. L. Kooijman-van Dijk, H. F. Kaan , M. van Leeuwen, G. T. M.de Boer, and H. H. C. de Moor. "PV-prive project at ECN: five years of experience with small-scale AC module PV systems," in European Photovoltaic Solar Energy Conference and Exhibition, Vol. 6, Jun. 2005.
  14. S. Guha, "Can your roof provide your electrical needs?-the growth prospect of building-integrated photovoltaic," in IEEE Photovoltaic Specialists Conference, pp: 12-16. Jan. 2005
  15. J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, "Advanced control architectures for intelligent microgrids - Part II: Power quality, energy storage, and AC/DC microgrids," IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1263-1270, Apr. 2013.
  16. T. F. Wu, H. S. Nien, C. L. Shen, and T. M. Chen, "A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration," IEEE Trans. Ind. Applicat., Vol. 41, No. 4, pp. 1075-1083, Jul. 2005. https://doi.org/10.1109/TIA.2005.851035
  17. J. W. He, Y. W. Li, and M. S. Munir, "A flexible harmonic control approach through voltage-controlled DG-grid interfacing converters," IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 444-455, Jan. 2012. https://doi.org/10.1109/TIE.2011.2141098
  18. J. W. He, Y. W. Li, F. Blaabjerg, and X. Wang, "Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control," IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 642-653, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2255895
  19. Y. Yang, F. Blaabjerg, H. Wang and M. G. Simoes, "Power control flexibilities for grid-connected multi-functional photovoltaic inverters," IET Renewable Power Generation, Vol. 10, No. 4, pp. 504-513, Apr. 2016. https://doi.org/10.1049/iet-rpg.2015.0133
  20. Z. Zou, Z. Wang, and M. Cheng, "Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter," IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3830-3839, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2280724
  21. T. F. Wu, H. S. Nien, H. M. Hsieh, and C. L. Shen, "PV power injection and active power filtering with amplitude-clamping and amplitude-scaling algorithms," IEEE Trans. Ind. Applicat., Vol. 43, No. 3, pp.731-741, May 2007. https://doi.org/10.1109/TIA.2007.895764
  22. Z. Zeng, R. Zhao, and H. Yang, "Coordinated control of multi-functional grid-tied inverters using conductance and susceptance limitation," IET Power Electronics, Vol. 7, No. 7, pp. 1821-1831, Jul. 2014. https://doi.org/10.1049/iet-pel.2013.0692
  23. Y. Yang, K. Zhou, and F. Blaabjerg, "Current harmonics from single-phase grid-connected inverters-examination and suppression," in IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 1, pp. 221-233, Mar. 2016. https://doi.org/10.1109/JESTPE.2015.2504845
  24. M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, "Control of single-stage single-phase PV inverter," Journal of European Power Electronics and Drives, Vol 16, No 3, pp. 20-26, 2006.
  25. M. A. Rezaei, K. J. Lee, and A. Q. Huang, "A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 318-327, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2407405
  26. F. Chen, Q. Zhang, A. Amirahmadi, and I. Batarseh, "Modeling and analysis of dc-link voltage for three-phase four-wire two-stage micro-inverter," in 29th Annual IEEE Applied Power Electronics Conference and Exposition(APEC), pp. 3000-3005, May 2014.
  27. D. Chen, and L. Li, "Novel static inverters with high frequency pulse DC link," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 971-978, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830048
  28. Q. Li, and P. Wolfs, "A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications," IEEE Trans. Power Electron., Vol. 22, No. 1, pp.309-321, Jan. 2007. https://doi.org/10.1109/TPEL.2006.886597
  29. A. Abramovitz, B. Zhao, and K. M. Smedley, "High-gain single-stage boosting inverter for photovoltaic applications," IEEE Trans. Power Electron., Vol. 31, No. 5, pp. 3550-3558, May 2016. https://doi.org/10.1109/TPEL.2015.2457454
  30. M. H. Karimi, H. Zamani, K. Kanzi, and Q.V. Farahani, "Implementation of a 35kVA converter base on the 3-phase 4-wire STATCOMs for medium voltage unbalanced systems," Journal of Power Electronics, Vol. 13, No. 5, pp.877-883, Sept. 2013. https://doi.org/10.6113/JPE.2013.13.5.877
  31. J. S. Kim, and Y. S. Kim, "A new control method for a single-phase hybrid active power filter based on a rotating reference frame," Journal of Power Electronics, Vol. 9, No. 5, pp. 718-725, Sep. 2009.
  32. P. C. Tan, P. C. Loh, and D. G. Holmes, "High-performance harmonic extraction algorithm for a 25kV traction power quality conditioner," in IEE Proceedings Electric Power Applications, Vol. 151, No.5, pp. 505-512, Sep. 2004. https://doi.org/10.1049/ip-epa:20040586
  33. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29, 2014.
  34. J. T. Su and C. W. Liu, "A novel phase-shedding control scheme for improved light load efficiency of multiphase interleaved DC-DC converters," IEEE Trans. Power Electron., Vol. 28, No. 10, pp. 4742-4752, Oct. 2013. https://doi.org/10.1109/TPEL.2012.2233220
  35. Y. Ahn, I. Jeon, and J. Roh, "A multiphase Buck converter with a rotating phase-shedding scheme for efficient light-load control," IEEE J. Solid-State Circuits, Vol. 49, No. 11, pp. 2673-2683, Nov. 2014. https://doi.org/10.1109/JSSC.2014.2360400
  36. H. C. Chen, "Interleaved current sensorless control for multiphase boost-type switch-mode rectifier with phase-shedding operation." IEEE Trans. Ind. Applicat., Vol. 61, No. 2, pp.766-775, Feb. 2014.