DOI QR코드

DOI QR Code

자기유변 입자 부식에 따른 응용장치의 성능 변화

Performance Change of Application Devices Caused by Magnetorheological Particle Corrosion

  • 투고 : 2016.11.01
  • 심사 : 2016.12.20
  • 발행 : 2016.12.28

초록

자기유변유체(magnetorheological Fluid: MR)를 이용한 차량용 응용장치는 다양한 주행환경에서도 안정적인 제어성능과 신뢰할 수 있는 작동을 요구한다. 하지만 자기유변 유체의 주요한 구성요소로는 철 입자가 포함되어 있으며, 이러한 철 입자는 부식에 매우 취약하여 자기유변유체의 제어특성에 심각한 영향을 미칠 수 있다. 따라서 본 논문에서는 이러한 자기유변 입자의 부식이 전단응력과 같은 자기유변유체의 성능에 미치는 영향을 고찰하고자 한다. 이를 위해 먼저 염화칼슘 수용액을 이용하여 일정시간 동안 MR 철입자를 부식시킨 후 전자현미경(scanning electron microscope: SEM)으로 관찰하고 에너지 분산 X선 기법으로 분자비를 분석함으로써 부식 진행상태를 확인한다. 그리고 부식된 철 입자를 실리콘 오일에 분산하여 자기유변유체를 조성한 다음 회전점도계를 이용하여 부식 전후의 전단응력의 변화를 비교 분석함으로써 자기유변유체를 구성하는 철입자의 부식이 MR 응용장치의 성능에 미치는 영향을 실험적으로 고찰한다. 이러한 연구를 기반으로 향후 철 입자가 부식된 자기유변유체를 실제 응용장치에 적용하여 제어성능에 나타나는 영향할 고찰하여 제어성능을 개선하는 연구로 발전시켜 나갈 예정이다.

MR(magnetorheological) devices for vehicle applications requires the consistent control performance and the reliable operation. However, the corrosion of iron particles consisting the MR fluid can significantly affect on MR properties. This paper presents an effect of the MR particle corrosion on the performance of MR fluids such as shear stress magnitude which is directly concerned with control performance. As a first step, MR particles are corroded by water-calcium chloride solution. The resulting MR particles are examined by scanning electron microscope (SEM) and their molar ratios are analyzed by the energy dispersive X-ray analysis (EDAX). By dispersing the corroded MR particles into silicone oil, the corroded MR fluid is synthesized for evaluation of MR effect change. A rotational viscometer is adopted to measure shear stress magnitude. Finally, it is demonstrated how much the corrosion affect on performances by comparing the normal MR fluid to the corroded MR fluid, from which performance investigation of the MR devices containing the corroded MR particles will be studied in the second phase of this study.

키워드

참고문헌

  1. Vernon, W. H. J., "A Laboratory study of the atmospheric corrosion of metals", Transactions of the Faraday Society, Vol. 27, pp. 255-277, 1931. https://doi.org/10.1039/TF9312700255
  2. Jones, D. A., "Principles and prevention of corrosion", Macmillan, 1992.
  3. Lai, C. Y. and Liao, W. H., "Vibration control of a suspension system via a magnetorheological damper", Journal of Vibration and Control, Vol. 8, pp. 527-547, 2002. https://doi.org/10.1177/107754602023712
  4. Kamath, G. M., Wereley, N. M and Jolly, M. R., "Characterization of Semi Active Magneto Rheological Fluid Lag Mode Dampers", SPIE Conference on Smart Structures and Integrated Systems, pp. 356-377, 1998.
  5. Lee, H. S. and Choi, S. B., "Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles", Journal of Intelligent Material Systems and Structures, Vol. 11, No. 1, pp. 80-87, 2000. https://doi.org/10.1106/412A-2GMA-BTUL-MALT
  6. Ye, S. and Williams, K. A., "Torsional vibration control with a MR fluid brake", Proceedings of SPIE, Vol. 5760, pp. 283-292, 2005,
  7. Hong, S. R. and Choi, S. B., "Vibration control of a structural system using magneto-rheological fluid mount", Journal of Intelligent Material System and Structures, Vol. 16, No. 11-12, pp. 931-936, 2005. https://doi.org/10.1177/1045389X05053917
  8. Choi, S. B., Lee, S. K., and Park Y. P., "A hysteresis model for the field-dependent damping force of a magnetorheological damper", Journal of Sound and Vibration, Vol. 245, pp. 375-383, 2001. https://doi.org/10.1006/jsvi.2000.3539
  9. Han, Y. M. and Min, C. G., "Performance Evaluation of Vehicle Gear-Shifting Supportive Device Utilizing MR Haptic Cue", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 23, No. 2, pp. 160-166, 2013. https://doi.org/10.5050/KSNVE.2013.23.2.160
  10. Neelakantan, V. A. and Washington, G. N., "Modeling and reduction of centrifuging in magnetorheological (MR) transmission clutches for automotive applications", Journal of Intelligent Material Systems and Structures, Vol 16, pp. 703-712, 2005. https://doi.org/10.1177/1045389X05054329
  11. Barber, D. E. and Carlson, J. D., "Performance characteristics of prototype MR engine mounts containing glycol MR fluids", Journal of Intelligent Material Systems and Structures, Vol. 21, pp. 1509-1516, 2010. https://doi.org/10.1177/1045389X09351957
  12. Senkal, D., Gurocak, H., "Spherical brake with MR fluid as multi degree of freedom actuator for haptics", Journal of Intelligent Material Systems and Structures, Vol. 20, pp. 2149-2160, 2009. https://doi.org/10.1177/1045389X09348925
  13. Sherif, El-Sayed M., "A Comparative Study on the Electrochemical Corrosion Behavior of Iron and X-65 Steel in 4.0 wt % Sodium Chloride Solution after Different Exposure Intervals", Molecule, Vol. 19, pp. 9962-9974, 2014. https://doi.org/10.3390/molecules19079962
  14. Moller, H., Boshoff, E.T. and Froneman, H., "The corrosion behaviour of a low carbon steel in natural and synthetic seawaters, The Journal of The South African Institute of Mining and Metallurgy", Vol. 106, pp. 585-592, 2006.
  15. Choi, S. B. and Han, Y. M., "Magnetorheological Fluid Technology: applications in vehicle systems", CRC press, 2012.