DOI QR코드

DOI QR Code

Investigation of SO2 Effect on TOMS O3 Retrieval from OMI Measurement in China

OMI 위성센서를 이용한 중국 지역에서 TOMS 오존 산출에 대한 이산화황의 영향 조사 연구

  • Choi, Wonei (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University) ;
  • Hong, Hyunkee (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Daewon (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University) ;
  • Ryu, Jae-Yong (Department of Urban Environmental Engineering, Kyungnam University) ;
  • Lee, Hanlim (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University)
  • 최원이 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 홍현기 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 김대원 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공) ;
  • 류재용 (경남대학교 도시환경공학과) ;
  • 이한림 (부경대학교 지구환경시스템과학부 공간정보시스템공학전공)
  • Received : 2016.11.17
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

In this present study, we identified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement over Chinese Industrial region from 2005 through 2007. The Planetary boundary layer (PBL) $SO_2$ data measured by OMI sensor is used in this present study. OMI-Total Ozone Mapping Spectrometer (TOMS) total $O_3$ is compared with OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ in various $SO_2$ condition in PBL. The difference between OMI-TOMS and OMI-DOAS total $O_3$ (T-D) shows dependency on $SO_2$ (R (Correlation coefficient) = 0.36). Since aerosol has been reported to cause uncertainty of both OMI-TOMS and OMI-DOAS total $O_3$ retrieval, the aerosol effect on relationship between PBL $SO_2$ and T-D is investigated with changing Aerosol Optical Depth (AOD). There is negligible aerosol effect on the relationship showing similar slope ($1.83{\leq}slope{\leq}2.36$) between PBL $SO_2$ and T-D in various AOD conditions. We also found that the rate of change in T-D per 1.0 DU change in PBL, middle troposphere (TRM), and upper troposphere and stratosphere (STL) are 1.6 DU, 3.9 DU and 4.9 DU, respectively. It shows that the altitude where $SO_2$ exist can affect the value of T-D, which could be due to reduced absolute radiance sensitivity in the boundary layer at 317.5 nm which is used to retrieve OMI-TOMS ozone in boundary layer.

본 연구에서는 2005년부터 2007년 사이에 중국 공업지대에서 Ozone Monitoring Instrument (OMI) 센서에서 관측한 이산화황 값의 증가에 따른 Total Ozone Mapping Spectrometer (OMI-TOMS)와 Differential Optical Absorption Spectrometer (OMI-DOAS) 오존전량 값의 차이를 위성자료를 이용하여 비교를 수행하였다. 중국 공업지대에서는 Planetary boundary layer (PBL)내의 이산화황을 나타내는 PBL $SO_2$ 자료가 사용되었다. 중국 공업지대에서 PBL내의 이산화황 농도 증가에 대하여 두 오존 값의 차이가 증가하는 경향성(R (Correlation coefficient) = 0.36)이 나타났다. 이산화황 이외에 두 오존 산출 알고리즘에 모두 영향을 미칠 수 있는 에어로솔 광학 두께(AOD; Aerosol Optical Depth)가 증가하는 경우 이산화황과 두 오존 값의 차이 사이의 회귀식의 기울기($1.83{\leq}slope{\leq}2.36$)가 비슷하게 유지되는 경향이 나타났다. 이는 다양한 AOD 조건에서도 이산화황이 두 오존 값의 차이를 증가시키는 관계가 나타나는 경향은 거의 비슷하게 유지되는 것으로 생각된다. 중국 공업지대에서 PBL내에 존재하는 이산화황과 화산 폭발에 의하여 고층(Middle troposphere (TRM), Upper troposphere and Stratosphere (STL))에서 존재하는 이산화황의 농도가 1 DU 증가하는 경우 두 오존 값의 차이는 각각 1.6 DU, 3.9 DU, 4.9 DU로 계산되었다. 고층(TRM, STL)의 이산화황과 저층(PBL)의 이산화황이 증가하는 경우 두 오존 값의 차이가 다르게 나타나는 것은 이산화황이 존재하는 고도에 따라서 두 오존 값의 차이에 미치는 영향이 다름을 의미한다. 이는 OMI-TOMS 오존을 산출하는데 사용되는 파장영역(317.5 nm)에서 행성경계층에서 이산화황에 의해 흡수되는 복사휘도의 감소된 민감도에 의한 것으로 생각된다.

Keywords

References

  1. Choi, W., Hong, H., Park, J., Kim, D., Yeo, J., and Lee, H., 2015. Investigation of SO2 effect on OMI-TOMS and OMI-DOAS O3 in volcanic areas with OMI satellite data. Korean Journal of Remote Sensing, 31(6), 599-608(in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.6.9
  2. Anton, M., M. Lopez, J. Vilaplana, M. Kroon, R. McPeters, M. Banon, and A. Serrano, 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula. Journal of Geophysical Research: Atmospheres (1984-2012), 114.
  3. Balis, D., M. Kroon, M. Koukouli, E. Brinksma, G. Labow, J. Veefkind, and R. McPeters, 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. Journal of Geophysical Research: Atmospheres (1984-2012), 112.
  4. Bhartia, P., 2002. OMI Algorithm Theoretical Basis Document. Volume II, OMI Ozone Products. NASA-OMI, Washington, DC, USA
  5. Bracher, A., L. Lamsal, M. Weber, K. Bramstedt, M. Coldewey-Egbers, and J. Burrows, 2005. Global satellite validation of SCIAMACHY O 3 columns with GOME WFDOAS. Atmospheric Chemistry and Physics, 5, 2357-2368. https://doi.org/10.5194/acp-5-2357-2005
  6. Bramstedt, K., J. Gleason, D. Loyola, W. Thomas, A. Bracher, M. Weber, and J. Burrows, 2003. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996-2000. Atmospheric Chemistry and Physics, 3, 1409-1419. https://doi.org/10.5194/acp-3-1409-2003
  7. Buchard, V., and Coauthors, 2008. Comparison of OMI ozone and UV irradiance data with groundbased measurements at two French sites. Atmospheric Chemistry and Physics, 8: 4517-4528. https://doi.org/10.5194/acp-8-4517-2008
  8. Chance, K. 2002. OMI algorithm theoretical basis document, volume IV: OMI trace gas algorithms. Accessed, 12, 2009.
  9. Hong, H., H. Lee, J. Kim, and Y. G. Lee, 2014. First comparison of OMI-DOAS total ozone using ground?based observations at a megacity site in East Asia: Causes of discrepancy and improvement in OMI-DOAS total ozone during summer. Journal of Geophysical Research: Atmospheres, 119: 10058-10067. https://doi.org/10.1002/2014JD021829
  10. Ialongo, I., G. Casale, and A. Siani, 2008. Comparison of total ozone and erythemal UV data from OMI with ground-based measurements at Rome station. Atmospheric Chemistry and Physics, 8: 3283-3289. https://doi.org/10.5194/acp-8-3283-2008
  11. Klimont, Z., Smith, S. J., and Cofala, J. 2013. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions. Environmental Research Letters, 8: 014003. https://doi.org/10.1088/1748-9326/8/1/014003
  12. Kroon, M., J. P. Veefkind, M. Sneep, R. McPeters, P. Bhartia, and P. Levelt, 2008. Comparing OMITOMS and OMI-DOAS total ozone column data. Journal of Geophysical Research: Atmospheres (1984-2012), 113.
  13. Krueger, A. J., 1983. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science, 220: 1377-1379. https://doi.org/10.1126/science.220.4604.1377
  14. Loyola, D. G., Koukouli, M. E., Valks, P., Balis, D. S., Hao, N., Van Roozendael, M., Spurr, R. J. D., Zimmer, W., Kiemle, S., Lerot, C., and Lambert, J. C., 2011. The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation. Journal of Geophysical Research: Atmospheres (1984-2012), 116.
  15. McKee, D., 1993. Tropospheric ozone: human health and agricultural impacts, CRC Press, Boca Raton, FL, USA
  16. McPeters, R., D. Heath, and B. Schlesinger, 1984. Satellite observation of SO2 from El Chichon: Identification and measurement. Geophysical Research Letters, 11: 1203-1206. https://doi.org/10.1029/GL011i012p01203
  17. McPeters, R., S. Hollandsworth, L. Flynn, J. Herman, and C. Seftor, 1996. Long-term ozone trends derived from the 16-year combined Nimbus 7/Meteor 3 TOMS Version 7 record. Geophysical Research Letters, 23, 3699-3702. https://doi.org/10.1029/96GL03540
  18. McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J. P., Bhartia, P. K., Levelt, P. K., 2008. Validation of the AURA Ozone Monitoring Instrument total column ozone product. Journal of Geophysical Research: Atmospheres (1984-2012), 113.
  19. Whelpdale, D. M., Watch, G. A., and Kaiser. M. 1996. Global Acid Deposition Assessment., World Meteorological Organization, Global Atmosphere Watch, Geneva, Switzerland.
  20. OMI Team, 2009. Ozone Monitoring Instrument (OMI) Data User's Guide, OMI-DUG-3.0, NASA, http://so2.umbc.edu/omi/omi docs.html