DOI QR코드

DOI QR Code

환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method

  • 투고 : 2015.08.11
  • 심사 : 2016.01.09
  • 발행 : 2016.02.10

초록

리드프레임에 구리합금소재를 사용할 경우 구리이외의 고농도의 철, 니켈, 아연 등이 포함되며 여기서 발생되는 에칭폐액은 지정폐기물로 지정되어 있다. 따라서 본 연구에서는 전기도금용 산화구리(II)를 제조하기 위해 고농도 중금속을 함유한 리드프레임 에칭폐액의 맞춤형 정제과정을 설계하였다. 리드프레임 에칭폐액의 경우 중금속 함유량이 높아 이온교환수지법 단독으로는 중금속을 제거하는데 한계가 있었다. 따라서 본 연구에서는 물에 대한 용해도차를 이용한 환원-산화법을 연계하여 염화구리(I)을 제조한 후 산화제인 과황산나트륨을 이용하여 염화구리(II)로 재회수하는 방법을 사용하였다. 최적 환원제로는 하이드라진을 선택하였고, 최적 첨가량은 구리 1.0 mol당 1.4 mol이다. 환원-산화법과 이온교환수지법을 연결하여 중금속을 제거할 경우 3회 반복 시 $Fe^{3+}$ (4.3 ppm), $Ni^{2+}$ (2.4 ppm), $Zn^{2+}$ (0.78 ppm)로 전기도금용 산화구리(II) 제조용 원료로 사용이 가능할 것으로 사료된다.

When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

키워드

참고문헌

  1. Y. J. Sim and E. Y. Kim, Present condition on the recycling and management for waste acids, Korean Chem. Eng. Res., 48(3), 300-303 (2010).
  2. M. Toyonage, Etching technology for printed wiring boards and regeneration of etching solution, Jpn. Pract. Surf. Technol., 29(12), 561-570 (1982).
  3. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, 2nd ed., 468-477, Chapman & Hall, New York (1990).
  4. H. Lee, E. Ahn, C. Park, and Y. Tak, Regeneration of waste ferric chloride etchant using HCl and $H_2O_2$, Appl. Chem. Eng., 24(1), 67-71 (2013).
  5. D. M. Allen, The Principle and Practices of Photochemical Machining and Photoetching, Adam Hilger Publication, New York (1986).
  6. O. Cakir, Copper etching with cupric chloride and regeneration of waste etchant, J. Mater. Process. Technol., 175, 63-68 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.024
  7. W. C. Bosshart, Printed Circuit Boards - Design and Technology, McGraw-Hill, New York (1983).
  8. H. C. Jeong, G. M. Choi, and D. J. Kim, The prediction of etching characteristics using spray characteristics in etching process of lead-frame, Trans. Korean Soc. Mech. Eng., 30(4), 381-388 (2006). https://doi.org/10.3795/KSME-B.2006.30.4.381
  9. R, H. Perry and D. W. Green, Perry's Chemical Engineers Handbook, 7th ed., McGraw-Hill, New York (1996).
  10. H. W. Richardson, Handbook of Copper Compounds and Applications, Marcel-Dekker, New York (1997).
  11. J. H. Yoon, H. W. Kwon, Y. T. Yu, R. G. Kim, and G. S. Kim, Synthesis of uniform Cu particles from copper chloride solution, Korean J. Mater. Res., 15(4), 263-270 (2005). https://doi.org/10.3740/MRSK.2005.15.4.263
  12. Y. D. Kim, K. C. Song, and J. H. Song, Preparation of copper fine particles from waste copper by chemical reduction method, Korean Chem. Eng. Res., 45(6), 560-565 (2007).
  13. Y. T. Yu and Y. Y. Choi, Synthesis of uniform Cu particles by hydrazine reduction from copper sulfate solution, Korean J. Mater. Res., 13(8), 524-530 (2003). https://doi.org/10.3740/MRSK.2003.13.8.524
  14. N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative studies on three kinds of reductants applicable for the reduction of graphene oxide, Appl. Chem. Eng., 26(1), 99-103 (2015). https://doi.org/10.14478/ace.2014.1127
  15. N. H. Jang, S. K. Park, H. M. Shim, and H. T. Kim, Comparison of pretreatment method for the enhancement of $CO_2$ mineralized sequestration using by serpentine, Appl. Chem. Eng., 21(1), 24-28 (2010).
  16. J. B. Lee, D. W. Kim, and C. Y. Lee, Deactivation of SCR catalysts applied in power plants, Appl. Chem. Eng., 21(1), 104-110 (2010).
  17. B. J. Kim, M. K. Seo, K. E. Choi, and S. J. Park, Electrochemical behaviors of Pt-Ru catalysts on the surface treated mesoporous carbon supports for direct methanol fuel cells, Appl. Chem. Eng., 22(2), 167-172 (2011).

피인용 문헌

  1. 국내 구리 함유 폐자원의 재활용 상용화 기술 및 연구동향 분석 vol.28, pp.1, 2016, https://doi.org/10.7844/kirr.2019.28.1.3