DOI QR코드

DOI QR Code

크롬(VI)-피라진 착물을 이용한 알코올류의 산화반응과 메카니즘

Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex

  • Park, Young Cho (The School of General Studies, Kangwon National University) ;
  • Kim, Young Sik (The School of General Studies, Kangwon National University)
  • 투고 : 2015.11.08
  • 심사 : 2016.01.08
  • 발행 : 2016.02.10

초록

6M HCl 용매 하에서 피라진과 chromium (VI) trioxide의 반응을 통하여 PZCC (크롬 (VI)-피라진 착물)을 합성하였다. 적외선분광광도법(IR), 유도결합 플라즈마(ICP) 등으로 구조를 확인하였다. 여러 가지 용매 하에서 PZCC을 이용하여 벤질알코올의 산화반응을 측정한 결과, 용매의 유전상수 값이 증가함에 따라 반응수율이 증가했다. 그 순서는 N,N'-디메틸포름아미드 > 아세톤 > 클로로포름 > 시클로헥센이었다. 산($H_2SO_4$) 촉매를 이용한 N,N'-디메틸포름아미드 용매 하에서, PZCC은 벤질알코올(H)과 그의 유도체들($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$)을 효과적으로 산화시켰다. 전자받개 그룹들은 반응속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰고, Hammett 반응상수(${\rho}$)값은 -0.70 (308 K)이었다. 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어났다.

Cr(VI)-pyrazine complex (PZCC) was synthesized by the reaction of pyrazine with chromium (VI) trioxide in 6 M HCl. The structure was characterized using IR spectroscopy and inductively coupled plasma (ICP). The oxidation of benzyl alcohol using PZCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: N,N'-dimethylform-amide > acetone > chloroform > cyclohexene. In the presence of N,N'-dimethylformamide solvent with an acidic catalyst such as sulfuric acid ($H_2SO_4$ solution), PZCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate-determining step.

키워드

참고문헌

  1. H. B. Davis, R. M. Sheets, and W. W. Pandler, High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants, Heterocyc-les, 22, 2029-2035 (1984). https://doi.org/10.3987/R-1984-09-2029
  2. M. R. Pressprich, R, D. Willett, and H. B. Davis, Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form $CrnO_3n^+_{12}^-$, Inorg. Chem., 27, 260-264 (1988). https://doi.org/10.1021/ic00275a009
  3. K. K. Banerji, Kinetic Study of the Oxidation of Substituted Benzyl Alcohols by Ethyl Chlorochromate, Bull. Chem. Soc. Japan, 61, 1767-1771 (1988). https://doi.org/10.1246/bcsj.61.1767
  4. M. K. Mahanti and D. Dey, Kinetics of Oxidation of Substituted Benzyl Alcohols by Quinolinium Dichromate, J. Org. Chem., 55, 5848-5850 (1990). https://doi.org/10.1021/jo00310a015
  5. M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, Quinolinium Dichromate Oxidation of Diols: A Kinetics Study, J. Org. Chem., 61, 8875-8877 (1996). https://doi.org/10.1021/jo961079m
  6. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2322 (1994). https://doi.org/10.1246/bcsj.67.2320
  7. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benzaldehyde, J. Phys. Chem., 101, 36-48 (1997). https://doi.org/10.1021/jp961678x
  8. I. S. Koo, J. S. Kim, and S. K. An, Kinetic Studies on Solvolyses of Subsitituted Cinnamoyl Chlorides in Alcohol-Water Mixture, J. Korean Chem. Soc., 43, 527-534 (1999).
  9. R. Tayebee, Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach, J. Korean Chem. Soc., 52, 23-29 (2008). https://doi.org/10.5012/jkcs.2008.52.1.023
  10. Y. S. Kim, H. Choi, and I. S. Koo, Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Subsitituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 31, 3279-3282 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3279
  11. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031
  12. G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benz aldehyde, J. Phys. Chem., 101, 36-40 (1997). https://doi.org/10.1021/jp961678x
  13. M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2324 (1994). https://doi.org/10.1246/bcsj.67.2320
  14. M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). https://doi.org/10.1021/jo00070a031