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Abstract—As the number of CPU/GPU cores and IPs 
in SOC increases and applications require explosive 
memory bandwidth, simultaneously achieving good 
throughput and fairness in the memory system among 
interfering applications is very challenging. Recent 
works proposed priority-based thread scheduling and 
channel partitioning to improve throughput and 
fairness. However, combining these different 
approaches leads to performance and fairness 
degradation. In this paper, we analyze the problems 
incurred when combining priority-based scheduling 
and channel partitioning and propose dynamic 
priority thread scheduling and adaptive channel 
partitioning method. In addition, we propose dynamic 
address mapping to further optimize the proposed 
scheme. Combining proposed methods could enhance 
weighted speedup and fairness for memory intensive 
applications by 4.2% and 10.2% over TCM or by 
19.7% and 19.9% over FR-FCFS on average whereas 
the proposed scheme requires space less than TCM by 
8%.    
 
Index Terms—Memory controller, channel partition, 
thread scheduling, system-on-chip    

I. INTRODUCTION 

Modern memory system suffers from performance 
degradation and unfairness due to interference caused by 
many applications running on the multi-core based 

computing platform. In order to mitigate this issue, 
previous studies have explored different approaches 
including thread scheduling, memory channel 
partitioning, and address mapping schemes. Thread 
scheduling techniques are studied in various texts [1, 3-6]. 
Thread scheduling approaches prioritize memory access 
requests from different applications (or threads) to give 
more priority to those whose performance gain could be 
maximized. On the other hand, as high bandwidth 
memory technologies such as HBM or Wide IO become 
available, more memory channels are used in the 
memory system. To use these parallel channels 
efficiently, Muralidhara et al. developed the memory 
channel partitioning (MCP) in which different threads are 
allocated to different channels to reduce interference [2]. 
Since channel and bank partitioning approach is 
orthogonal to thread scheduling, it is claimed to be used 
on top of various memory scheduling to achieve further 
performance improvement.  

To evaluate different memory controller schemes, two 
widely accepted metrics are available: performance and 
fairness. As a performance metric, weighted speedup is 
used [11]. It measures the sum of each thread’s 
throughput under memory sharing normalized to its own 
throughput under no memory sharing. As a fairness 
metric, maximum slowdown is used. It measures the 
worst case slowdown experienced by any one of the 
threads.  

In general, weighted speedup gets much improved as 
we give more memory bandwidth to threads which can 
be improved the most with additional bandwidth 
allocation. Latency sensitive applications belong to this 
category. Kim et al. proposed thread cluster memory 
(TCM) that groups threads according to memory access 
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characteristics and ranks them based on applications’ 
memory intensity and memory access patterns [1]. 
Thread scheduling is performed based on this ranking 
method. TCM uses the memory access intensity to divide 
applications to latency-sensitive and bandwidth-sensitive 
groups and gives higher priority to the latency-sensitive 
group. In addition, it ranks threads in the bandwidth-
sensitive group based on bank-level parallelism (BLP) 
and row-buffer locality (RBL). TCM employs a shadow 
row-buffer to keep track of row-buffer locality of an 
individual thread independently. The row-buffer locality 
of a thread is an important metric because higher locality 
can cause more interference. The RBL of each thread on 
a real system is distorted by other applications memory 
operations as a result of scheduling. However, the 
priority ranks based on shadow row-buffer locality do 
not reflect applications’ memory access characteristics in 
real environment because they do not consider 
interaction among different threads. That flawed ranking 
method leads to unfair prioritization and causes 
starvation. 

Whereas TCM penalizes the threads causing 
interference to isolate thread interference in the memory 
system, MCP achieves thread interference isolation by 
mapping threads to physically different channels. It uses 
miss per kilo instruction (MPKI) and RBL to group and 
map applications of similar characteristics to 3 different 
channels. However, static threshold values used for 
partitioning in MCP cause skewed utilization of channel 
bandwidth. MCP claims that it can be used with any 
memory scheduling techniques such as FR-FCFS [7], 
ATLAS, or TCM and enhance the weighted speedup. 
However, TCM with MCP seriously degrades the 
fairness because grouping threads of similar 
characteristics in MCP causes starvation of low priority 
threads in the same group. 

To resolve these issues, we propose three schemes as 
follows. First, we propose a new thread ranking method 
based on row-buffer miss count and executed instruction 
count for bandwidth sensitive threads, which 
dynamically increases the priority of an application when 
an application has a large row-buffer miss rate due to 
interference whereas TCM requires forced shuffling. 
Second, we resolve two problems in MCP: unbalanced 
channel partition and interference among applications 
with similar characteristics mapped on the same channel. 

Finally, we propose application specific address mapping 
which maximizes either row-buffer locality or bank-level 
parallelism.  

In Section 2, we discuss previous works and their 
draw- backs. In Section 3, we present our proposed 
scheduling and mapping methods. Finally, we show 
experimental results in Section 4 followed by conclusion 
in Section 5. 

II. BACKGROUND 

1. Baseline Memory Controller Architecture 
 
A typical memory system consists of multiple memory 

channels. Memory requests from different threads 
running on multiple processor cores are distributed to 
multiple channels for full bandwidth utilization. Each 
channel has its own memory controller connected to the 
DRAM module and operates independently. In general, a 
memory controller has a transaction queue and a 
command queue. Both transaction and command queue 
store memory requests from different threads. A thread 
scheduler (e.g. FR-FCFS, TCM) in these queues assigns 
priority to different memory requests and schedules them 

 

Fig. 1. Memory controller architecture. 
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according to their priority. DRAM has an internal cache 
called a row-buffer to cache a row of the internal 
memory array. If data for a memory request is found in 
the row-buffer, the access is called a hit and the access 
time becomes short. Otherwise, the access takes longer to 
fetch a new row. In multi-threaded environment, many 
threads share a row-buffer in DRAM and cause a row 
conflict resulting in poor bandwidth utilization. 

 
2. TCM 

 
In TCM, threads are grouped into a latency-sensitive 

cluster (group) or a bandwidth-sensitive thread cluster 
(group). The former has the higher priority than the latter 
in memory controller scheduling. 

 

 Priority µ  BLP
RBL

             (1) 

 
Within the bandwidth-sensitive group, the priority of a 

thread is determined using the relationship in Eq. (1) 
where BLP is bank-level parallelism and RBL is row-
buffer locality. In TCM, a memory controller keeps track 
of row-buffer hits/misses of a thread by maintaining a 
virtual row-buffer per thread. It measures row-buffer hits 
or misses per thread as if the thread only uses a shared 
row-buffer. This virtual row-buffer is referred as a 
shadow row-buffer and measures RBL (row-buffer hit 
rate) per thread. However, a shadow row-buffer hit rate 
(RBL) does not reflect the thread’s memory performance 
caused by scheduling. Suppose that a thread has a row-
buffer access pattern of H(hit), M(miss), H(hit), M(miss) 

during a sampling window. Then, RBL is 2
4

 = 0.5. 

When this thread’s priority is demoted and scheduled 
only twice in the next sampling window and gets a 

pattern of H, M. Then, RBL is still 1
2

 = 0.5 although 

the priority is lowered and its memory performance is 
degraded. For this reason, TCM requires thread priority 
shuffling to avoid starvation of penalized threads. Until 
the shuffling happens, the performance of a lower 
priority thread continuously gets degraded. This effect is 
further explained in Fig. 2. 

Fig. 2 compares the row buffer hits/misses measured 
by the shadow row buffers proposed in TCM (top) and 
the combined row buffer used in real DRAM (bottom). 

The illustration shows that a shadow row buffer does not 
reflect the behavior of the real row buffer in DRAM.  

In Fig. 2, the upper diagram shows the scheduled 
sequence of memory requests, the contents of the shadow 
row-buffer (SRB) for thread 1 (white) and 2 (yellow), 
and the hit/miss of shadow row-buffers for the scheduled 
sequence. In the figure, the first four scheduled memory 
requests are address 1, 0, 1, and 2. They are from thread 
2, 1, 2, 2 respectively. The second and third rows for 
SRBs show the contents of the SRB for thread 1 and 2. 
The hit/miss for two SRBs are combined and shown in 
the fourth row. The moment when the content of a 
shadow row buffer changes either in second or third row 
indicates a row buffer miss. For instance, the second 1 in 
the scheduled sequence causes a hit in the SRB for thread 
2. The following 2 causes a miss in the same SRB 
because it is a new address. Hits or misses are separately 
measured for two SRBs. The row-buffer locality (RBL) 
for thread 1 and 2 are 100% and 50% respectively 
because thread 1 has two hits and thread 2 has four hits 
and four misses. Hence, thread 1 has the lower priority 
according to Eq. (1).  

The lower diagram shows the contents of a shared row 
buffer in real DRAM and the row buffer hits/misses for 
the same scheduled sequence as the upper diagram. 
Again, whenever a new memory request accesses a 
different row, it causes a row buffer miss. For the first 
four memory requests, they cause row buffer misses 
because they accesses different rows. When RBL is 
measured with a real shared DRAM row-buffer as shown 
in the lower diagram, RBL for thread 1 and 2 are 0% and 
25% respectively because thread 1 has no hit and thread 
2 has two hits out of eight memory requests.  

 

Fig. 2. Row-buffer locality with a shadow row-buffer (up) and 
a shared row-buffer (down). 
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When we compare upper and lower diagrams, the real 
DRAM RBL for thread 1 is small as a result of 
scheduling and it should be set to a high priority. But its 
priority remains low in TCM due to high shadow RBL. 
That is, the RBL measured in TCM does not reflect the 
RBL of the real DRAM row buffer. This problem is 
aggravated when TCM is used with MCP because the 
threads of similar RBL are grouped together in MCP and 
a thread may be severely penalized over another despite 
very small difference in RBL. 

 
3. MCP 

 
MCP improves memory utilization by isolating 

interference among threads via efficient channel mapping. 
It uses Misses Per Kilo-instructions (MPKI) and RBL 
information of applications to group and map threads to 
three memory channels. Threads whose MPKI is less 
than the average MPKI are mapped to the first channel. 
Remaining threads are further divided into two groups 
according to their RBL values. Threads whose RBL are 
less than 50% are mapped to the second channel and 
others are to the third channel respectively.  

MCP has several drawbacks. First, at least three 
channels are required in the memory system. Second, a 
static partition scheme not considering bandwidth 
allocation (e.g. using a static RBL value of 50%) incurs 
unbalanced bandwidth distribution between channels. 
Finally, threads grouping based on similarity does not 
work well with thread scheduling schemes such as TCM. 
For instance, two threads with RBL of 40% and 41% 
respectively are mapped to the same channel in MCP. 
When TCM is used to schedule two threads, the thread 
with 41% RBL is continuously penalized although RBLs 
of two threads are not much different. This TCM 
problem is aggravated by MCP because MCP groups 
threads with similar RBL together.  

III. PROPOSED SCHEME 

1. Overall Memory Controller Architecture 
 
Our proposed memory controller architecture is based 

on a channel partition scheme to reduce interference 
among threads and improve bandwith allocation. In 
addition, we present a novel thread scheduling scheme 

based on dynamic thread prioritization which works well 
with channel partitioning. Finally, we further improve 
performance and fairness via channel specific address 
mapping. Each component is explained in detail in 
following sections. 

 
2. Dynamic Priority Thread Scheduling (DPTS) 
 

The thread grouping and ranking in the proposed 
memory controller is similar to TCM. Latency-sensitive 
threads have higher priority than bandwidth-sensitive 
threads in scheduling. One major difference is that 
bandwidth sensitive threads are ranked using Eq. (2). 

 

 Priority µ  
  

 
i

i

Row Buffer Miss
InstructionCount

       (2) 

 
The relationship shows that the priority of thread i is 

proportional to the number of row-buffer misses caused 
by thread i and inversely proportional to the instruction 
count of thread i during the sampling period. The row-
buffer misses are measured using a shared row-buffer as 
shown the bottom of Fig. 2. The crucial drawback of 
TCM is to use the hits/misses measured from a shadow 
row-buffer, which do not reflect the real row-buffer 
hits/misses. Due to this, a high RBL thread is 
continuously assigned to a low priority and TCM 
requires periodic shuffling to correct the starvation 
problem. Since a shared row-buffer is used in DPTS, 
increased row-buffer misses due to lowering priority 
dynamically increase priority in the next sampling period 
and thus it does not require periodic shuffling. In 
addition, a thread assigned to low priority is slow-
downed, which reduces the instruction count and 
increases the priority again using Eq. (2). 
 
3. Adaptive Multi-channel Partitioning (AMP) 

 
To resolve issues discussed in Section II.3, we propose 

an adaptive channel partition method. Its partition 
method is depicted in Fig. 3. We use two channels which 
can be further extended for even number of channels. 
First, threads are sorted in an ascending order according 
to the memory bandwidth usage. The first N threads in 

the sorted list whose sum is less than 
1
6

 of total 
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bandwidth sum are grouped into latency-sensitive threads 
(low memory bandwidth utilization group). They are 
further partitioned into two halves and mapped to two 
channels respectively.  

By separating the lower half from the higher half, 
interference from the higher half on the lower one does 
not occur. Bandwidth-sensitive threads (high memory 
bandwidth utilization group) are divided according to 
their RBL values. Instead of using a fixed value of 50% 
like in MCP, an average RBL value is used for thread 
grouping. If a thread has a RBL value less than the 
average, it is mapped to the low RBL channel. Otherwise, 
it is mapped to the high RBL channel. Because of this, 
low RBL threads do not suffer from the interference from 
high RBL threads. In addition, used memory bandwidths 
are evenly distributed between two channels because an 
average RBL value is used instead of a static value. Both 
low and high RBL threads are scheduled using DPTS 
respectively and do not suffer from starvation. 

 
4. Dynamic Address Mapping (DAM) 

 
When a memory request is received by a memory 

controller, its address is translated to channel, rank, bank, 
row, and column number according to a pre-determined 
address mapping method. Two considered mapping 
methods are cache-line interleaving and row interleaving. 
Cache-line interleaving refers to an address mapping 
method where subsequent cache-lines are mapped across 
ranks, banks, channels before being mapped to the same 
row. On the other hand, subsequent cache-lines in the 
row interleaving scheme are mapped to the same row 

until the entire row is used. 
In our proposed scheme, we use cache-line 

interleaving for the channel mapping high RBL threads 
and row interleaving for the channel mapping low RBL 
threads. We refer this address scheme as dynamic 
address mapping scheme (DAM). When a thread 
requests a new physical page upon demand paging, a 
new page is allocated from the channel where a 
requesting thread belongs. Then each channel interprets 
the address of a memory request according to the address 
mapping scheme. 

Since AMP is our baseline channel partitioning 
scheme, threads are classified into latency-sensitive, high 
RBL, low RBL threads. First, latency-sensitive threads 
mapped to both channels are not too much affected by 
DAM because they do not use memory bandwidth much. 
Second, high RBL threads typically much interfere with 
other threads because of their high row-buffer locality. 
Thus using row interleaving could aggravate interference. 
Meanwhile, they also show streaming memory access 
patterns where subsequent cache lines are accessed in 
order. For this reason, the high RBL thread channel uses 
cache-line interleaving to improve the throughput of the 
memory system by exploiting bank-level parallelism. 
Finally, low RBL threads exhibit random memory access 
patterns. We use row interleaving for low RBL threads 
so that increasing row-buffer locality isolates thread 
interference and improves fairness. 

IV. EXPERIMENTAL RESULTS 

1. Simulation Setup 
 
We modify DRAMSim2 simulator [8] and use SPEC 

CPU2006 benchmark [9] to evaluate our memory 
controller scheme. We create test cases by mixing 24 
applications and vary memory traffic intensity by 
selecting 25%, 50%, 75% and 100% of applications from 
bandwidth-sensitive benchmarks. For instance, 25% 
means that a mix of 24 applications includes 6 
bandwidth-sensitive benchmarks and 18 latency-sensitive 
benchmarks. To evaluate IPC of each benchmark, we use 
the Macsim simulator [10] in conjunction with the 
DRAMSim2 simulator.  

Our baseline system has 24-core CPU. Each core has 
4-way 32 KB L1 cache with 64 Byte block size and 8-

 

Fig. 3. Adaptive multi-channel partitioning method. 
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way 256 KB L2 cache with 64 Byte block size. Our 
memory system uses DDR3 DRAMs running at 
800 MHz and consists of 2 channels, 1 rank per channel, 
8 banks per rank. We employ 2 metrics: weighted 
speedup (performance) and maximum slowdown 
(fairness) to compare the throughput of the proposed 
memory system and fairness among mixed threads [1]. 
They are defined as follows. 

 

 Weighted Speedup =  
shared
i

alone
i i

IPC
IPCå   

 Maximum Slowdown = max
alone
i
sharedi
i

IPC
IPC

  

 
2. Comparing Performance and Fairness with Previous 
Schemes 

 
We compare our proposed scheme to FR-FCFS [7], 

TCM [1], and BLISS [6]. Fig. 4 shows weighted speedup 
(system performance) and maximum slowdown 
(fairness) values averaged over all experiments. In the 
legend, DPTS refers to dynamic priority thread 
scheduling, AMP refers to adaptive multi-channel 
partitioning, and DAM refers to dynamic address 
mapping. In Fig. 4, points toward right-upper corner 
show overall better performance and fairness. Both 
performance and fairness values of different schemes are 
normalized to those of FR-FCFS. As it is shown, DPTS 
only shows slightly worse performance than TCM 
because uneven bandwidth allocations for different 
channels. However, our proposed memory controller 

employing all three techniques improves weighted 
speedup by 15.99%, 3.22%, 8.79% and maximum 
slowdown by 20.59%, 3.06%, 0.69% over FR-FCFS, 
TCM, and BLISS respectively. Although adding DAM 
slightly improves the performance over DPTS+AMP, 
most gain comes from combining DPTS and AMP. This 
is because DPTS is very effective to schedule the threads 
of similar characteristics, which are grouped together by 
AMP, whereas AMP successfully isolates the 
interference among threads of different memory access 
behaviors. When we consider only memory intensive 
applications which get much attention recently (e.g. GPU 
and IP memory traffic in mobile devices or big data 
application in data centers), our proposed method could 
enhance weighted speedup and fairness further, which 
will be explained in the next section. 

 
3. Effects of Varying Memory Intensity in Workloads 

 
Fig. 5 compares the performance and fairness of the 

proposed scheme over FR-FCFS, TCM, BLISS with 
respect to four different memory intensity mixes. In Fig. 

 

 

Fig. 4. Average performance and fairness of various schemes. 
 

 

 

Fig. 5. Comparing performance and fairness for different 
workload mixes. 
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5, x axis represents the percentage of memory intensive 
applications where memory intensive applications are 
defined as those whose MPKI are larger than the average 
MPKI of all applications in selected benchmark. Both 
performance and fairness of different schemes are 
normalized to that of the FR-FCFS. The proposed 
memory controller shows the best system performance 
over all other scheme for different percentage values.  

To figure out the performance and fairness of the 
proposed scheme for highly memory intensive 
applications (e.g. IP's or GPU's memory requests in 
mobile phones or big data memory traffic in data center), 
we only average the performance and fairness for the 
cases where memory intensive application percentages 
are 75% and 100%. The results in Fig. 5 show that our 
proposed method (DPTS+AMP) enhances weighted 
speedup and fairness for memory intensive applications 
by 4.2% and 10.2% over TCM or by 19.7% and 19.9% 
over FR-FCFS on average. The gain of our proposed 
scheme (DPTS+AMP) over TCM is greater for memory 
intensive applications for several reasons. First, memory 
intensive applications are severely penalized by TCM at 
the cost of performance improvement for latency 
sensitive applications whereas DPTS dynamically adjusts 
the priority of memory intensive applications so that they 
are not continuously penalized. Second, DPTS+AMP 
successfully isolates the interference among memory 
intensive applications whereas TCM is not effective to 
schedule memory intensive applications of similar 
characteristics. 

 
4. Effect of Alternative Thread Ranking Metrics 

 
We study alternative thread ranking metrics for 

memory intensive threads (or bandwidth-sensitive 
threads) to evaluate the ranking metric of DPTS shown in 
Eq. (2). The first alternative ranking metric we consider 
is shown in Eq. (3).  

 

 Priority µ  
  

 
i

i

Row Buffer Miss
Memory Accesses

       (3) 

 
In this ranking metric, the priority of a thread i is 

inversely proportional to the number of memory accesses 
from thread i during a sampling period. Unlike the 
ranking metric for DPTS where the instruction count is 

used in the bottom, Eq. (3) considers a row-buffer miss 
rate. Fig. 6 shows the performance and fairness of 
different ranking metrics combined with proposed 
schemes. Again, performance and fairness are 
normalized to those of FR-FCFS. DPTSM uses Eq. (3) 
for thread scheduling.  

The second ranking metric we consider is shown in Eq. 
(4). 

 

 Priority µ  
  

  X
i

i i

Row Buffer Miss
Memory Accesses Instruction

  (4) 

 
This metric differs from Eq. (3) in that the priority of a 

thread i is inversely proportional to both number of 
memory accesses and executed instructions for thread i 
during the sampling period. In Fig. 6, DPTSI represents a 
thread scheduling scheme using the ranking metric in Eq. 
(4).  

Fig. 6 shows that the proposed ranking metric in DPTS 

 

 

Fig. 6. Comparing alternative thread ranking metrics.  
 

 

Fig. 7. Comparing bandwidth utilization for different workload
mixes. 
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performs better than Eqs. (3, 4). The results show that 
DPTSM+AMP using Eq. (3) has the best performance 
but its fairness is degraded compared to Eq. (2). Schemes 
using DPTSI show poor fairness because the result of 
scheduling is not reflected correctly. This is due to the 
fact that a miss rate (row-buffer miss/ memory accesses) 
is a small number and dividing it with the number of 
instructions makes the overall metric too small.  

 
5. Comparing Bandwidth Utilization with Previous 
Schemes 

 
Bandwidth utilization shows how much memory 

bandwidth is actually used to support applications. For 
four different application groups shown above, we 
compare our schemes with FR-FCFS, BLISS, and TCM. 
As we can see from the plot, our best scheme combining 
three methods shows the best bandwidth utilization 
compared to other previous schemes. FR-FCFS is a 
memory scheduler solely aiming at maximizing 
bandwidth utilization. However, our scheme shows better 
bandwidth utilization because grouping similar 
applications into different channels and banks to isolate 
interference and using dedicated address schemes for 
different groups improve bandwidth utilization as well. 

 
6. Hardware Costs 

 
We compare the cost of our proposed scheme with the 

best known scheme, TCM. TCM requires memory space 
to store information for MPKI (240 bits), bank-level 
parallelism (672 bits), row-buffer locality (2880 bits) and 
shuffling logic for 24 threads (cores) per channel 
according to Table 2 in [1].  

Compared to TCM, our proposed scheme does not 
require hardware for measuring bank-level parallelism 
(672 bits) and thread shuffling which is quite expensive. 
Instead, our scheme needs one shared row-buffer miss 
counter per thread across all banks to store real row-
buffer misses for each thread. This requires Nthreads´ log2 
Countmax = 24 ´ log2(32 ´ 1024) = 24 ´ 15 = 360 bits 
assuming the sampling period is 500,000 cycles.  

In summary, TCM requires memory space to store 
information for MPKI (240 bits), bank-level parallelism 
(672 bits), and row-buffer locality (2880 bits). Our 
scheme requires memory space to store information for 

MPKI (240 bits), row-buffer locality (2880 bits), and 
shared row buffer miss counters (360 bits). Thus, ratio 
between our scheme and TCM is (240+2880+360)/(240+ 
672+2880) = 3480/3792 = 0.92. Thus, our scheme 
requires 8% less space than TCM. 

V. CONCLUSIONS 

We present an adaptive memory controller that 
combines three orthogonal approaches: thread scheduling, 
memory channel partitioning, and address mapping. Our 
scheduling algorithm offers dynamic priority thread 
scheduling that can work efficiently with the proposed 
adaptive channel partitioning method. Along with those 
schemes, the proposed dynamic address mapping scheme 
boosts both of system throughput and fairness. 

Our experiments show that the proposed scheme 
outperforms the best known scheme, e.g. TCM, by 4.2% 
(throughput) and 10.2% (fairness) for memory intensive 
application. We plan to extend our work for the 
challenging heterogeneous computing platform where 
many memory bandwidth hungry IPs coexist with CPU 
and GPU cores. 
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