
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2016.16.6.808 ISSN(Online) 2233-4866

Manuscript received Apr. 11, 2016; accepted Aug. 2, 2016
Dept. of Computer Science and Engineering, Sogang University, Korea
E-mail : ecl0038@sogang.ac.kr

Adaptive Memory Controller for High-performance
Multi-channel Memory

Jin-ku Kim, Jong-bum Lim, Woo-cheol Cho, Kwang-Sik Shin, Hoshik Kim, and Hyuk-Jun Lee

Abstract—As the number of CPU/GPU cores and IPs
in SOC increases and applications require explosive
memory bandwidth, simultaneously achieving good
throughput and fairness in the memory system among
interfering applications is very challenging. Recent
works proposed priority-based thread scheduling and
channel partitioning to improve throughput and
fairness. However, combining these different
approaches leads to performance and fairness
degradation. In this paper, we analyze the problems
incurred when combining priority-based scheduling
and channel partitioning and propose dynamic
priority thread scheduling and adaptive channel
partitioning method. In addition, we propose dynamic
address mapping to further optimize the proposed
scheme. Combining proposed methods could enhance
weighted speedup and fairness for memory intensive
applications by 4.2% and 10.2% over TCM or by
19.7% and 19.9% over FR-FCFS on average whereas
the proposed scheme requires space less than TCM by
8%.

Index Terms—Memory controller, channel partition,
thread scheduling, system-on-chip

I. INTRODUCTION

Modern memory system suffers from performance
degradation and unfairness due to interference caused by
many applications running on the multi-core based

computing platform. In order to mitigate this issue,
previous studies have explored different approaches
including thread scheduling, memory channel
partitioning, and address mapping schemes. Thread
scheduling techniques are studied in various texts [1, 3-6].
Thread scheduling approaches prioritize memory access
requests from different applications (or threads) to give
more priority to those whose performance gain could be
maximized. On the other hand, as high bandwidth
memory technologies such as HBM or Wide IO become
available, more memory channels are used in the
memory system. To use these parallel channels
efficiently, Muralidhara et al. developed the memory
channel partitioning (MCP) in which different threads are
allocated to different channels to reduce interference [2].
Since channel and bank partitioning approach is
orthogonal to thread scheduling, it is claimed to be used
on top of various memory scheduling to achieve further
performance improvement.

To evaluate different memory controller schemes, two
widely accepted metrics are available: performance and
fairness. As a performance metric, weighted speedup is
used [11]. It measures the sum of each thread’s
throughput under memory sharing normalized to its own
throughput under no memory sharing. As a fairness
metric, maximum slowdown is used. It measures the
worst case slowdown experienced by any one of the
threads.

In general, weighted speedup gets much improved as
we give more memory bandwidth to threads which can
be improved the most with additional bandwidth
allocation. Latency sensitive applications belong to this
category. Kim et al. proposed thread cluster memory
(TCM) that groups threads according to memory access

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 809

characteristics and ranks them based on applications’
memory intensity and memory access patterns [1].
Thread scheduling is performed based on this ranking
method. TCM uses the memory access intensity to divide
applications to latency-sensitive and bandwidth-sensitive
groups and gives higher priority to the latency-sensitive
group. In addition, it ranks threads in the bandwidth-
sensitive group based on bank-level parallelism (BLP)
and row-buffer locality (RBL). TCM employs a shadow
row-buffer to keep track of row-buffer locality of an
individual thread independently. The row-buffer locality
of a thread is an important metric because higher locality
can cause more interference. The RBL of each thread on
a real system is distorted by other applications memory
operations as a result of scheduling. However, the
priority ranks based on shadow row-buffer locality do
not reflect applications’ memory access characteristics in
real environment because they do not consider
interaction among different threads. That flawed ranking
method leads to unfair prioritization and causes
starvation.

Whereas TCM penalizes the threads causing
interference to isolate thread interference in the memory
system, MCP achieves thread interference isolation by
mapping threads to physically different channels. It uses
miss per kilo instruction (MPKI) and RBL to group and
map applications of similar characteristics to 3 different
channels. However, static threshold values used for
partitioning in MCP cause skewed utilization of channel
bandwidth. MCP claims that it can be used with any
memory scheduling techniques such as FR-FCFS [7],
ATLAS, or TCM and enhance the weighted speedup.
However, TCM with MCP seriously degrades the
fairness because grouping threads of similar
characteristics in MCP causes starvation of low priority
threads in the same group.

To resolve these issues, we propose three schemes as
follows. First, we propose a new thread ranking method
based on row-buffer miss count and executed instruction
count for bandwidth sensitive threads, which
dynamically increases the priority of an application when
an application has a large row-buffer miss rate due to
interference whereas TCM requires forced shuffling.
Second, we resolve two problems in MCP: unbalanced
channel partition and interference among applications
with similar characteristics mapped on the same channel.

Finally, we propose application specific address mapping
which maximizes either row-buffer locality or bank-level
parallelism.

In Section 2, we discuss previous works and their
draw- backs. In Section 3, we present our proposed
scheduling and mapping methods. Finally, we show
experimental results in Section 4 followed by conclusion
in Section 5.

II. BACKGROUND

1. Baseline Memory Controller Architecture

A typical memory system consists of multiple memory

channels. Memory requests from different threads
running on multiple processor cores are distributed to
multiple channels for full bandwidth utilization. Each
channel has its own memory controller connected to the
DRAM module and operates independently. In general, a
memory controller has a transaction queue and a
command queue. Both transaction and command queue
store memory requests from different threads. A thread
scheduler (e.g. FR-FCFS, TCM) in these queues assigns
priority to different memory requests and schedules them

Fig. 1. Memory controller architecture.

810 JIN-KU KIM et al : ADAPTIVE MEMORY CONTROLLER FOR HIGH-PERFORMANCE MULTI-CHANNEL MEMORY

according to their priority. DRAM has an internal cache
called a row-buffer to cache a row of the internal
memory array. If data for a memory request is found in
the row-buffer, the access is called a hit and the access
time becomes short. Otherwise, the access takes longer to
fetch a new row. In multi-threaded environment, many
threads share a row-buffer in DRAM and cause a row
conflict resulting in poor bandwidth utilization.

2. TCM

In TCM, threads are grouped into a latency-sensitive

cluster (group) or a bandwidth-sensitive thread cluster
(group). The former has the higher priority than the latter
in memory controller scheduling.

 Priority µ BLP
RBL

 (1)

Within the bandwidth-sensitive group, the priority of a

thread is determined using the relationship in Eq. (1)
where BLP is bank-level parallelism and RBL is row-
buffer locality. In TCM, a memory controller keeps track
of row-buffer hits/misses of a thread by maintaining a
virtual row-buffer per thread. It measures row-buffer hits
or misses per thread as if the thread only uses a shared
row-buffer. This virtual row-buffer is referred as a
shadow row-buffer and measures RBL (row-buffer hit
rate) per thread. However, a shadow row-buffer hit rate
(RBL) does not reflect the thread’s memory performance
caused by scheduling. Suppose that a thread has a row-
buffer access pattern of H(hit), M(miss), H(hit), M(miss)

during a sampling window. Then, RBL is 2
4

 = 0.5.

When this thread’s priority is demoted and scheduled
only twice in the next sampling window and gets a

pattern of H, M. Then, RBL is still 1
2

 = 0.5 although

the priority is lowered and its memory performance is
degraded. For this reason, TCM requires thread priority
shuffling to avoid starvation of penalized threads. Until
the shuffling happens, the performance of a lower
priority thread continuously gets degraded. This effect is
further explained in Fig. 2.

Fig. 2 compares the row buffer hits/misses measured
by the shadow row buffers proposed in TCM (top) and
the combined row buffer used in real DRAM (bottom).

The illustration shows that a shadow row buffer does not
reflect the behavior of the real row buffer in DRAM.

In Fig. 2, the upper diagram shows the scheduled
sequence of memory requests, the contents of the shadow
row-buffer (SRB) for thread 1 (white) and 2 (yellow),
and the hit/miss of shadow row-buffers for the scheduled
sequence. In the figure, the first four scheduled memory
requests are address 1, 0, 1, and 2. They are from thread
2, 1, 2, 2 respectively. The second and third rows for
SRBs show the contents of the SRB for thread 1 and 2.
The hit/miss for two SRBs are combined and shown in
the fourth row. The moment when the content of a
shadow row buffer changes either in second or third row
indicates a row buffer miss. For instance, the second 1 in
the scheduled sequence causes a hit in the SRB for thread
2. The following 2 causes a miss in the same SRB
because it is a new address. Hits or misses are separately
measured for two SRBs. The row-buffer locality (RBL)
for thread 1 and 2 are 100% and 50% respectively
because thread 1 has two hits and thread 2 has four hits
and four misses. Hence, thread 1 has the lower priority
according to Eq. (1).

The lower diagram shows the contents of a shared row
buffer in real DRAM and the row buffer hits/misses for
the same scheduled sequence as the upper diagram.
Again, whenever a new memory request accesses a
different row, it causes a row buffer miss. For the first
four memory requests, they cause row buffer misses
because they accesses different rows. When RBL is
measured with a real shared DRAM row-buffer as shown
in the lower diagram, RBL for thread 1 and 2 are 0% and
25% respectively because thread 1 has no hit and thread
2 has two hits out of eight memory requests.

Fig. 2. Row-buffer locality with a shadow row-buffer (up) and
a shared row-buffer (down).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 811

When we compare upper and lower diagrams, the real
DRAM RBL for thread 1 is small as a result of
scheduling and it should be set to a high priority. But its
priority remains low in TCM due to high shadow RBL.
That is, the RBL measured in TCM does not reflect the
RBL of the real DRAM row buffer. This problem is
aggravated when TCM is used with MCP because the
threads of similar RBL are grouped together in MCP and
a thread may be severely penalized over another despite
very small difference in RBL.

3. MCP

MCP improves memory utilization by isolating

interference among threads via efficient channel mapping.
It uses Misses Per Kilo-instructions (MPKI) and RBL
information of applications to group and map threads to
three memory channels. Threads whose MPKI is less
than the average MPKI are mapped to the first channel.
Remaining threads are further divided into two groups
according to their RBL values. Threads whose RBL are
less than 50% are mapped to the second channel and
others are to the third channel respectively.

MCP has several drawbacks. First, at least three
channels are required in the memory system. Second, a
static partition scheme not considering bandwidth
allocation (e.g. using a static RBL value of 50%) incurs
unbalanced bandwidth distribution between channels.
Finally, threads grouping based on similarity does not
work well with thread scheduling schemes such as TCM.
For instance, two threads with RBL of 40% and 41%
respectively are mapped to the same channel in MCP.
When TCM is used to schedule two threads, the thread
with 41% RBL is continuously penalized although RBLs
of two threads are not much different. This TCM
problem is aggravated by MCP because MCP groups
threads with similar RBL together.

III. PROPOSED SCHEME

1. Overall Memory Controller Architecture

Our proposed memory controller architecture is based

on a channel partition scheme to reduce interference
among threads and improve bandwith allocation. In
addition, we present a novel thread scheduling scheme

based on dynamic thread prioritization which works well
with channel partitioning. Finally, we further improve
performance and fairness via channel specific address
mapping. Each component is explained in detail in
following sections.

2. Dynamic Priority Thread Scheduling (DPTS)

The thread grouping and ranking in the proposed
memory controller is similar to TCM. Latency-sensitive
threads have higher priority than bandwidth-sensitive
threads in scheduling. One major difference is that
bandwidth sensitive threads are ranked using Eq. (2).

 Priority µ

i

i

Row Buffer Miss
InstructionCount

 (2)

The relationship shows that the priority of thread i is

proportional to the number of row-buffer misses caused
by thread i and inversely proportional to the instruction
count of thread i during the sampling period. The row-
buffer misses are measured using a shared row-buffer as
shown the bottom of Fig. 2. The crucial drawback of
TCM is to use the hits/misses measured from a shadow
row-buffer, which do not reflect the real row-buffer
hits/misses. Due to this, a high RBL thread is
continuously assigned to a low priority and TCM
requires periodic shuffling to correct the starvation
problem. Since a shared row-buffer is used in DPTS,
increased row-buffer misses due to lowering priority
dynamically increase priority in the next sampling period
and thus it does not require periodic shuffling. In
addition, a thread assigned to low priority is slow-
downed, which reduces the instruction count and
increases the priority again using Eq. (2).

3. Adaptive Multi-channel Partitioning (AMP)

To resolve issues discussed in Section II.3, we propose

an adaptive channel partition method. Its partition
method is depicted in Fig. 3. We use two channels which
can be further extended for even number of channels.
First, threads are sorted in an ascending order according
to the memory bandwidth usage. The first N threads in

the sorted list whose sum is less than
1
6

 of total

812 JIN-KU KIM et al : ADAPTIVE MEMORY CONTROLLER FOR HIGH-PERFORMANCE MULTI-CHANNEL MEMORY

bandwidth sum are grouped into latency-sensitive threads
(low memory bandwidth utilization group). They are
further partitioned into two halves and mapped to two
channels respectively.

By separating the lower half from the higher half,
interference from the higher half on the lower one does
not occur. Bandwidth-sensitive threads (high memory
bandwidth utilization group) are divided according to
their RBL values. Instead of using a fixed value of 50%
like in MCP, an average RBL value is used for thread
grouping. If a thread has a RBL value less than the
average, it is mapped to the low RBL channel. Otherwise,
it is mapped to the high RBL channel. Because of this,
low RBL threads do not suffer from the interference from
high RBL threads. In addition, used memory bandwidths
are evenly distributed between two channels because an
average RBL value is used instead of a static value. Both
low and high RBL threads are scheduled using DPTS
respectively and do not suffer from starvation.

4. Dynamic Address Mapping (DAM)

When a memory request is received by a memory

controller, its address is translated to channel, rank, bank,
row, and column number according to a pre-determined
address mapping method. Two considered mapping
methods are cache-line interleaving and row interleaving.
Cache-line interleaving refers to an address mapping
method where subsequent cache-lines are mapped across
ranks, banks, channels before being mapped to the same
row. On the other hand, subsequent cache-lines in the
row interleaving scheme are mapped to the same row

until the entire row is used.
In our proposed scheme, we use cache-line

interleaving for the channel mapping high RBL threads
and row interleaving for the channel mapping low RBL
threads. We refer this address scheme as dynamic
address mapping scheme (DAM). When a thread
requests a new physical page upon demand paging, a
new page is allocated from the channel where a
requesting thread belongs. Then each channel interprets
the address of a memory request according to the address
mapping scheme.

Since AMP is our baseline channel partitioning
scheme, threads are classified into latency-sensitive, high
RBL, low RBL threads. First, latency-sensitive threads
mapped to both channels are not too much affected by
DAM because they do not use memory bandwidth much.
Second, high RBL threads typically much interfere with
other threads because of their high row-buffer locality.
Thus using row interleaving could aggravate interference.
Meanwhile, they also show streaming memory access
patterns where subsequent cache lines are accessed in
order. For this reason, the high RBL thread channel uses
cache-line interleaving to improve the throughput of the
memory system by exploiting bank-level parallelism.
Finally, low RBL threads exhibit random memory access
patterns. We use row interleaving for low RBL threads
so that increasing row-buffer locality isolates thread
interference and improves fairness.

IV. EXPERIMENTAL RESULTS

1. Simulation Setup

We modify DRAMSim2 simulator [8] and use SPEC

CPU2006 benchmark [9] to evaluate our memory
controller scheme. We create test cases by mixing 24
applications and vary memory traffic intensity by
selecting 25%, 50%, 75% and 100% of applications from
bandwidth-sensitive benchmarks. For instance, 25%
means that a mix of 24 applications includes 6
bandwidth-sensitive benchmarks and 18 latency-sensitive
benchmarks. To evaluate IPC of each benchmark, we use
the Macsim simulator [10] in conjunction with the
DRAMSim2 simulator.

Our baseline system has 24-core CPU. Each core has
4-way 32 KB L1 cache with 64 Byte block size and 8-

Fig. 3. Adaptive multi-channel partitioning method.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 813

way 256 KB L2 cache with 64 Byte block size. Our
memory system uses DDR3 DRAMs running at
800 MHz and consists of 2 channels, 1 rank per channel,
8 banks per rank. We employ 2 metrics: weighted
speedup (performance) and maximum slowdown
(fairness) to compare the throughput of the proposed
memory system and fairness among mixed threads [1].
They are defined as follows.

 Weighted Speedup =
shared
i

alone
i i

IPC
IPCå

 Maximum Slowdown = max
alone
i
sharedi
i

IPC
IPC

2. Comparing Performance and Fairness with Previous
Schemes

We compare our proposed scheme to FR-FCFS [7],

TCM [1], and BLISS [6]. Fig. 4 shows weighted speedup
(system performance) and maximum slowdown
(fairness) values averaged over all experiments. In the
legend, DPTS refers to dynamic priority thread
scheduling, AMP refers to adaptive multi-channel
partitioning, and DAM refers to dynamic address
mapping. In Fig. 4, points toward right-upper corner
show overall better performance and fairness. Both
performance and fairness values of different schemes are
normalized to those of FR-FCFS. As it is shown, DPTS
only shows slightly worse performance than TCM
because uneven bandwidth allocations for different
channels. However, our proposed memory controller

employing all three techniques improves weighted
speedup by 15.99%, 3.22%, 8.79% and maximum
slowdown by 20.59%, 3.06%, 0.69% over FR-FCFS,
TCM, and BLISS respectively. Although adding DAM
slightly improves the performance over DPTS+AMP,
most gain comes from combining DPTS and AMP. This
is because DPTS is very effective to schedule the threads
of similar characteristics, which are grouped together by
AMP, whereas AMP successfully isolates the
interference among threads of different memory access
behaviors. When we consider only memory intensive
applications which get much attention recently (e.g. GPU
and IP memory traffic in mobile devices or big data
application in data centers), our proposed method could
enhance weighted speedup and fairness further, which
will be explained in the next section.

3. Effects of Varying Memory Intensity in Workloads

Fig. 5 compares the performance and fairness of the

proposed scheme over FR-FCFS, TCM, BLISS with
respect to four different memory intensity mixes. In Fig.

Fig. 4. Average performance and fairness of various schemes.

Fig. 5. Comparing performance and fairness for different
workload mixes.

814 JIN-KU KIM et al : ADAPTIVE MEMORY CONTROLLER FOR HIGH-PERFORMANCE MULTI-CHANNEL MEMORY

5, x axis represents the percentage of memory intensive
applications where memory intensive applications are
defined as those whose MPKI are larger than the average
MPKI of all applications in selected benchmark. Both
performance and fairness of different schemes are
normalized to that of the FR-FCFS. The proposed
memory controller shows the best system performance
over all other scheme for different percentage values.

To figure out the performance and fairness of the
proposed scheme for highly memory intensive
applications (e.g. IP's or GPU's memory requests in
mobile phones or big data memory traffic in data center),
we only average the performance and fairness for the
cases where memory intensive application percentages
are 75% and 100%. The results in Fig. 5 show that our
proposed method (DPTS+AMP) enhances weighted
speedup and fairness for memory intensive applications
by 4.2% and 10.2% over TCM or by 19.7% and 19.9%
over FR-FCFS on average. The gain of our proposed
scheme (DPTS+AMP) over TCM is greater for memory
intensive applications for several reasons. First, memory
intensive applications are severely penalized by TCM at
the cost of performance improvement for latency
sensitive applications whereas DPTS dynamically adjusts
the priority of memory intensive applications so that they
are not continuously penalized. Second, DPTS+AMP
successfully isolates the interference among memory
intensive applications whereas TCM is not effective to
schedule memory intensive applications of similar
characteristics.

4. Effect of Alternative Thread Ranking Metrics

We study alternative thread ranking metrics for

memory intensive threads (or bandwidth-sensitive
threads) to evaluate the ranking metric of DPTS shown in
Eq. (2). The first alternative ranking metric we consider
is shown in Eq. (3).

 Priority µ

i

i

Row Buffer Miss
Memory Accesses

 (3)

In this ranking metric, the priority of a thread i is

inversely proportional to the number of memory accesses
from thread i during a sampling period. Unlike the
ranking metric for DPTS where the instruction count is

used in the bottom, Eq. (3) considers a row-buffer miss
rate. Fig. 6 shows the performance and fairness of
different ranking metrics combined with proposed
schemes. Again, performance and fairness are
normalized to those of FR-FCFS. DPTSM uses Eq. (3)
for thread scheduling.

The second ranking metric we consider is shown in Eq.
(4).

 Priority µ

 X
i

i i

Row Buffer Miss
Memory Accesses Instruction

 (4)

This metric differs from Eq. (3) in that the priority of a

thread i is inversely proportional to both number of
memory accesses and executed instructions for thread i
during the sampling period. In Fig. 6, DPTSI represents a
thread scheduling scheme using the ranking metric in Eq.
(4).

Fig. 6 shows that the proposed ranking metric in DPTS

Fig. 6. Comparing alternative thread ranking metrics.

Fig. 7. Comparing bandwidth utilization for different workload
mixes.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 815

performs better than Eqs. (3, 4). The results show that
DPTSM+AMP using Eq. (3) has the best performance
but its fairness is degraded compared to Eq. (2). Schemes
using DPTSI show poor fairness because the result of
scheduling is not reflected correctly. This is due to the
fact that a miss rate (row-buffer miss/ memory accesses)
is a small number and dividing it with the number of
instructions makes the overall metric too small.

5. Comparing Bandwidth Utilization with Previous
Schemes

Bandwidth utilization shows how much memory

bandwidth is actually used to support applications. For
four different application groups shown above, we
compare our schemes with FR-FCFS, BLISS, and TCM.
As we can see from the plot, our best scheme combining
three methods shows the best bandwidth utilization
compared to other previous schemes. FR-FCFS is a
memory scheduler solely aiming at maximizing
bandwidth utilization. However, our scheme shows better
bandwidth utilization because grouping similar
applications into different channels and banks to isolate
interference and using dedicated address schemes for
different groups improve bandwidth utilization as well.

6. Hardware Costs

We compare the cost of our proposed scheme with the

best known scheme, TCM. TCM requires memory space
to store information for MPKI (240 bits), bank-level
parallelism (672 bits), row-buffer locality (2880 bits) and
shuffling logic for 24 threads (cores) per channel
according to Table 2 in [1].

Compared to TCM, our proposed scheme does not
require hardware for measuring bank-level parallelism
(672 bits) and thread shuffling which is quite expensive.
Instead, our scheme needs one shared row-buffer miss
counter per thread across all banks to store real row-
buffer misses for each thread. This requires Nthreads´ log2
Countmax = 24 ´ log2(32 ´ 1024) = 24 ´ 15 = 360 bits
assuming the sampling period is 500,000 cycles.

In summary, TCM requires memory space to store
information for MPKI (240 bits), bank-level parallelism
(672 bits), and row-buffer locality (2880 bits). Our
scheme requires memory space to store information for

MPKI (240 bits), row-buffer locality (2880 bits), and
shared row buffer miss counters (360 bits). Thus, ratio
between our scheme and TCM is (240+2880+360)/(240+
672+2880) = 3480/3792 = 0.92. Thus, our scheme
requires 8% less space than TCM.

V. CONCLUSIONS

We present an adaptive memory controller that
combines three orthogonal approaches: thread scheduling,
memory channel partitioning, and address mapping. Our
scheduling algorithm offers dynamic priority thread
scheduling that can work efficiently with the proposed
adaptive channel partitioning method. Along with those
schemes, the proposed dynamic address mapping scheme
boosts both of system throughput and fairness.

Our experiments show that the proposed scheme
outperforms the best known scheme, e.g. TCM, by 4.2%
(throughput) and 10.2% (fairness) for memory intensive
application. We plan to extend our work for the
challenging heterogeneous computing platform where
many memory bandwidth hungry IPs coexist with CPU
and GPU cores.

ACKNOWLEDGMENTS

This Article was supported by Future Technology
Fund of LG Electronics.

REFERENCES

[1] Y. Kim, M. Papamichael, O. Mutlu, and M.
HarcholBalter, "Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access
Behavior," in MICRO, 2010.

[2] S. Muralidhara et al, “Reducing memory
interference in multi-core systems via application-
aware memory channel partitioning,” In MICRO-
44, 2011.

[3] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter,
"ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory
controllers,” in HPCA, 2010.

[4] O. Mutlu and T. Moscibroda, "Parallelism-aware
batch scheduling: Enhancing both performance and
fairness of shared DRAM systems," in ISCA, 2008.

816 JIN-KU KIM et al : ADAPTIVE MEMORY CONTROLLER FOR HIGH-PERFORMANCE MULTI-CHANNEL MEMORY

[5] R. Ausavarungnirun et aI, "Staged Memory
Scheduling: Achieving high performance and
scalability in heterogeneous systems," in ISCA,
2012.

[6] L. Subramanian et al, “The blacklisting memory
scheduler: Achieving high performance and
fairness at low cost,” in ICCD, 2014

[7] S. Rixner et al, “Memory access scheduling,” In
ISCA-27, 2000

[8] P. Rosenfeld et al., “Dramsim2: A cycle accurate
memory system simulator,” CAL, 2011.

[9] “SPEC CPU 2006,” http://www.spec.org/cpu2006/.
[10] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J.

Lim, and T. Pho. “MacSim: A CPU-GPU
Heterogeneous Simulation Framework User
Guide,” Georgia Institute of Technology, 2012

[11] A. Snavely and D. M. Tullsen. “Symbiotic job
scheduling for a simultaneous multithreading
processor,” In ASPLOS-IX, 2000.

Jin-ku Kim received B.S in 2013
and is currently pursuing the PhD
program in Computer Science and
Engineering from Sogang University.
He is in Embedded computing
Laboratory. His research interests
include high-performance memory

system and memory scheduling.

Jong-bum Lim received the B.S. and
M.S. degree in Computer Science and
Engineering from Sogang University
in 2013 and 2015. His research
interests include high-speed networking
and high-performance memory system.

Woo-cheol Cho received the B.S.
and M.S. degrees in Computer
Science and Engineering from
Sogang University in 2012 and 2014.
He is a Ph.D candidate at the
Embedded Computing Laboratory.
His research interests include many-

core based system.

Kwang-Sik Shin received the B.S.,
the M.S, and Ph.D degrees in
Electronic Engineering from University
of Inha, Incheon, Korea in 2001,
2003, and 2008, respectively. From
2008 to 2011, he served as a Senior
Engineer in content division group at

Electronics and Telecommunications Research Institute,
Daejeon, Korea. He currently works at the System IC
research center in LG electronics, Seoul, Korea. His
research interests include computer architecture, network,
parallel processing, system architecture, and memory
architectures.

Hoshik Kim received his bachelor’s
degree in electrical engineering from
Yonsei University, Seoul, Korea and
received his master’s and doctoral
studies in electrical engineering from
University of Southern California,
Los Angeles, CA. He is currently

Principal Engineer at System IC Center, LG Electronics,
Seoul, Korea where he is developing the architecture and
design of memory subsystems for mobile application
processors. Prior to joining LG Electronics in 2013, he
was with Intel Corporation, Santa Clara, CA for 9 years
working in the areas of design technology, automation
and verification for various microprocessors and system-
on-chip products. His current research interests include
memory systems and interconnect architectures, design
automation and verification of system-on-chips.

Hyuk-Jun Lee received the B.S.
degree in Computer Engineering
from University of Southern California,
Los Angeles, CA in 1993 and the
M.S. and Ph.D. degrees in electrical
engineering from Stanford University,
Stanford, CA, in 1995 and 2001,

respectively. From 2001 to 2011, he served as a Senior
Engineer in routing technology group at Cisco System,
San Jose, CA. He is currently an Associate Professor at
the Department of Computer Science and Engineering,
Sogang University, Seoul, Korea. His research interests
include embedded systems, low-power design, and
memory architectures.

