
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2016.16.6.880 ISSN(Online) 2233-4866

Manuscript received Oct. 10, 2016; accepted Dec. 12, 2016
Seungjae Baek is with the Korea Institute of Ocean Science and
Technology
E-mail : baeksj@kiost.ac.kr

Adaptable I/O System based I/O Reduction for
Improving the Performance of HDFS

Jung Kyu Park, Jaeho Kim, Sungmin Koo, and Seungjae Baek*

Abstract—In this paper, we propose a new HDFS-AIO
framework to enhance HDFS with Adaptive I/O
System (ADIOS), which supports many different I/O
methods and enables applications to select optimal
I/O routines for a particular platform without source-
code modification and re-compilation. First, we
customize ADIOS into a chunk-based storage system
so its API semantics can fit the requirement of HDFS
easily; then, we utilize Java Native Interface (JNI) to
bridge HDFS and the tailored ADIOS. We use
different I/O patterns to compare HDFS-AIO and the
original HDFS, and the experimental results show the
design feasibility and benefits. We also examine the
performance of HDFS-AIO using various I/O
techniques. There have been many studies that use
ADIOS, however our research is expected to help in
expanding the function of HDFS.

Index Terms—HDFS, ADIOS, JNI, HADOOP, GFS

I. INTRODUCTION

With the advent of the Big Data era, an overwhelming
amount of data can be generated in our daily life by a
wide range of computing facilities, from smart phones
and wearable computing devices to high-end scientific
computing clusters and giant data centers enabling
world-wide media and social networking services [14].
To extract meaningful knowledge and economic value
from massive-scale data, MapReduce has evolved as the

main processing framework since its introduction by
Google in around 2004 [1]. Inspired by the map and
reduce functions commonly used in functional
programming language, the Google MapReduce
programming model inherits the parallelism
characteristic and is equipped with a scalable and reliable
runtime system to parallelize the analysis job to process
extremely large datasets, which are kept in Google File
System (GFS), the distributed storage system inside the
framework [2]. Its simple yet expressive interfaces,
efficient scalability, and strong fault tolerance have
motivated a growing number of organizations to build
their services on the MapReduce framework.

The success of Google MapReduce in the Big Data era
motivates the development of Hadoop MapReduce, the
most popular open-source implementation of MapReduce,
and Hadoop Distributed File System (HDFS), the
counterpart of GFS [3]. Hadoop MapReduce includes
two categories of components: a JobTracker and many
TaskTrackers. The JobTracker commands TaskTrackers
to process data through the two functions, i.e., map and
reduce, which users define according to particular
analysis requirements.

Large-scale scientific applications (e.g. global
warming modeling and combustion simulation programs)
often generate an extremely massive volume of data [15,
16]. The gap between the I/O speed and computing
power of high-end clusters motivates many research
efforts on the improvement of storage techniques [5].
However, these techniques are often based upon
underlying system supports; hence, they are not always
compatible with each other. Therefore, the application
using one particular I/O technique has to be modified
when ported to another platform, and the cost to change

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 881

the long-term developed and optimized scientific
program might be high. This issue is closely related to
what we just stated about HDFS. To address this,
Adaptive I/O System (ADIOS) has been designed [4].
ADIOS, as middleware, supports many different I/O
methods, data formats, and parallel file systems. Most
importantly, it enables the upper application to select
optimal I/O routines for a particular platform without
source-code modification and re-compilation. The
ADIOS interfaces for applications to use are as simple as
POSIX ones, although not compatible; new storage
systems or techniques can be hooked into them very
easily. ADIOS has been widely adopted in the HPC
community due to its simplicity, extensibility, and
efficiency.

Therefore, to enable HDFS to fully utilize the power
of HPC clusters, we propose a new HDFS-AIO
framework to enhance HDFS with ADIOS, so that the
platform specific performance-enhancing features and
various high-performance I/O techniques can be
leveraged by HDFS without the cost incurred by source-
code modification. Specifically, on the one hand, we
customize ADIOS into a chunk-based storage system and
implement a set of POSIX-compatible interfaces for it;
on the other hand, we use JNI to enable HDFS to use the
functions of the tailored ADIOS through this new set of
POSIX APIs. To investigate the feasibility and
advantages of our design, we conduct a set of
experiments to compare HDFS-AIO and the original
HDFS. For the current system prototype, the data-writing
performance can be improved by up to 10%. In addition,
we analyze the performance of HDFS-AIO configured
with different I/O methods (e.g. POSIXIO and MPI-IO)
to evaluate if HDFS can benefit from the edibility of
ADIOS.

The rest of the paper is organized as follows. Chapter
II provides the background for this work. We then
describe customizing ADIOS and integrating it with
HDFS via JNI in Chapter III. Chapter IV analyzes the
experimental results. Finally, we conclude the paper.

II. RELATED WORKS

In this chapter, we describe the background of this
work. First, we present the general framework of the
Hadoop Ecosystem; then, we focus on HDFS, which is

modified and enhanced in this work. After the
explanation of the runtime mechanism of HDFS for data
reading and writing, we introduce ADIOS in terms of its
architecture and data file structure. Finally, we discuss
Java Native Interface (JNI), which is used in our system
to integrate HDFS and ADIOS.

1. Hadoop

The Hadoop framework is designed for data-intensive

distributed applications. Essentially, it implements the
computational model MapReduce, in which each job is
divided into many parallel tasks assigned to a cluster of
nodes [1]. These tasks are categorized into two types:
MapTask and ReduceTask. These are responsible for the
execution of user-defined map and reduce functions to
process data in an embarrassingly parallel manner. Loss
of data and computation failure due to system glitches
are common in large-scale distributed computing
scenarios. Therefore, to make Hadoop easy to program,
the reliability issues of both computation and data are
handled within the framework transparently and hidden
from the application programmers.

To achieve the required core function and ease of
programmability, several subsystems are provided within
the whole Hadoop Ecosystem. The subsystem, Hadoop
MapReduce, implements the data-processing framework,
which encapsulates the computational model MapReduce.
One JobTracker and many TaskTrackers are present in
this layer. To be specific, the JobTracker accepts a job
from a client, divides the job into tasks according to the
input splits stored within HDFS, and assigns them to
TaskTrackers with the awareness of data locality. In the
meantime, TaskTrackers, one per slave node, take full
control of the node-local computing resource via slot
abstraction. Two kinds of slots are defined: map slots and
reduce slots. On each TaskTracker, the numbers of both
slots are configurable. Additionally, they can be regarded
as static resource containers for executing corresponding
tasks: MapTask or ReduceTask. YARN (MRv2) is the
second generation of the Hadoop framework, which
splits the resource management and job scheduling
functions into different components. In contrast, these
functions are closely tangled inside JobTracker in the
first generation. Under the processing framework is the
storage subsystem: HDFS [3]. We discuss its structure in

882 JUNG KYU PARK et al : ADAPTABLE I/O SYSTEM BASED I/O REDUCTION FOR IMPROVING THE PERFORMANCE OF HDFS

detail here and its runtime feature in the next section.
HDFS consists of one NameNode and several DataNodes.
The NameNode is responsible for building and managing
the file system name space, which is used to map each
file name to the locations of corresponding file data. It is
not a single location, but a set of locations because the
file is broken into a list of equal-sized blocks that are
perhaps assigned to different DataNodes. Furthermore,
on the DataNode, each block is kept as a single file, with
a few replicas dispersed on other DataNodes to ensure
high data reliability.

2. Hadoop Distributed File System (HDFS)

HDFS plays a critical role in the Hadoop Ecosystem

[13]. In this section, we focus on its runtime features.
When accessing data, the HDFS clients only
communicate with NameNode for necessary metadata.
After that, most subsequent operations are performed
between clients and DataNodes directly.

To read a file, the client inquiries NameNode for the
location of each block belonging to the file. If permitted
to access it, it will acquire the information of a set of
DataNodes, which keep the file blocks. Because of
replication, each block might reside on several
DataNodes, and the client will select the nearest one, in
terms of network hops, to obtain the block. During the
read process, no intervention from NameNode is needed,
avoiding potential performance bottleneck. In addition,
HDFS supports the random seek operation for reads.

To write a file, the client first asks the NameNode to
allocate space from the storage cluster to keep the user
file. It will receive a list of DataNodes for each file block.
Additionally, a replication pipeline is built with this set
of DataNodes to store the block. The client then splits the
block into small packets and transmits them to the first
DataNode in the pipeline; this DataNode persistently
stores each packet and mirrors it in the downstream
DataNode.

The “store and mirror” action is executed by all the
DataNodes in the pipeline; when the acknowledgement
from the downstream DataNode is received, the
DataNode will notify the upstream DataNode of the
success of receiving the packet, and finally the first
DataNode in the pipeline will notify the client. The next
block will not be written until all the packets from the

current block are received by all the DataNodes in the
pipeline. In contrast with the read operations, HDFS only
supports sequential write operations. By default, each
block has three replicas. Thus, to balance data reliability
and access throughput, HDFS writes the first replica on
the local node if the client runs on DataNode; the second
one on the local rack; and the last one on a remote rack.

3. Adaptive I/O System (ADIOS)

ADIOS is highly configurable and lightweight I/O
middleware [4]. It is not a runtime system, but a library.
Applications need to embed the APIs exposed by this
middleware to access the data on the disk. By making use
of ADIOS, the application can switch among different
I/O methods and tune parameters that might impact I/O
performance without source-code modification and
recompilation. These features are particularly beneficial
to scientific applications, which often require a long time
to develop, optimize, and verify, and is hard to port to
different platforms.

However, with ADIOS, the scientific application can
be regarded as a block-box when ported or tuned
according to the specific characteristics of underlying
platforms and even high-level requirements. On the other
hand, to achieve wide adoption in the HPC community,
ADIOS supports many advanced I/O methods (e.g.
synchronous MPI-IO, collective MPI-IO, and
asynchronous I/O) using the DataTap system [8]; many
high-performance file systems (e.g. GPFS [9] and Lustre
[10]); as well as several different data formats (e.g.
NetCDF, HDF-5, and its native BP format [4]), which
will be described later. However, it should be noted that
though ADIOS APIs are as simple as POSIX ones, they
are not POSIX-compatible, which makes this work very
challenging.

III. DESIGN AND IMPLEMENTATION

In this section, we start with the description of our new
framework, HDFS-AIO, which is designed to enhance
HDFS by offloading its disk I/O to ADIOS. Then, we
propose an approach to customize ADIOS. Based on the
customization, we wrap the original ADIOS APIs into a
set of POSIX-compatible ones, upon which the
modification within HDFS is dependent. At the end of

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 883

this chapter, we summarize the constituent components,
which HDFS needs to leverage the ADIOS functions.

Previous work also used ADIOS framework for
improving the performance of HDFS [17]. However, the
difference of work is that the study divided big data file
to several files and then has read the file with I/O stream.
We used the scheme that enables HDFS to store data
blocks into BP file as variables.

1. The Architecture of HDFS-AIO

Fig. 1 illustrates the general architecture of our design.

We keep the HDFS APIs intact, while enhancing HDFS
to utilize the efficient and flexible ADIOS. Two extra
layers are introduced between HDFS and ADIOS to
integrate them.

The layer inside HDFS includes the components
encapsulating the BP file and its I/O streams. In the
existing implementation of HDFS, the file for storing the
data block is abstracted as a plain byte stream. File,
FileInputStream, and FileOutputStream are utilized to
access these disk files. There is no such hierarchical
structure within them as in BP files, whose structure is
presented in Section 2.3. If we construct an ordinary file
object upon a BP file via a new File(), the operations,
such as obtain file size or seek in file, will behave
abnormally. Additionally, the BP file only supports the
open modes “w” (write-only), “r” (read-only), and “a”
(write-only without erasing existing content). Therefore,
we design and implement a dedicated file object (i.e.
BPFile) according to the specific structure of the BP file.

However, it is not sufficient to use only an abstraction
of the static file structure. It will not work as expected to
access the BP file via FileInputStream or

FileOutputStream, which is designed for a byte stream-
based file, because the runtime states, like r/w pointers,
are supposed to be maintained in a manner matching the
underlying file abstraction. Therefore, we also realize the
I/O streams corresponding to the BP file (i.e.
BPFileInputStream and BPFileOutputStream).

The layers that encapsulate ADIOS consist of the
components to transform the native ADIOS APIs into
POSIX-compatible ones, which enable the
implementation of the Java-side relevant objects
mentioned above. The gap of the interfaces’ semantics
between ADIOS and POSIX makes it challenging to
accomplish this transformation. We use the write
operation as an example to describe this issue.

In the POSIX standard, the write interface is specified
as “ssize t write (int fd, const void *buf, size t count),”
which means writing up to count bytes from the buffer
pointed by buf to the file referred to by the file descriptor
fd [11]. The amount of bytes to store cannot be known
before the interface is called. Additionally, an explicit
writing pointer is maintained, which is incremented
automatically after each execution of this operation.
However, the write interface provided by ADIOS is “int
adios write (int64 t hdlr, char *var name, void *var
value)” [1]. hdlr is a handler pointing to an internal data
structure, which includes the context information (e.g.
the file descriptor of the BP file, I/O buffers, and a set of
offsets for variables and attributes). The content to write
is in a contiguous memory space pointed by the var value.
The var name passed to this function should correspond
to the name in the variable definition, which is listed in
the XML file. Within the variable definition, the size of
the var value is also configured beforehand. Because the
variables are defined before the application runs, their
offsets in the file can be calculated even before writing is
executed, which enables ADIOS to store these variables
via their names without maintaining an explicit writing
pointer.

The read operation has a similar difference (i.e.
POSIX has an explicit reading pointer, while ADIOS
locates content by variable names). In fact, simply
speaking, our method for handling the semantics gap is
to tailor ADIOS to work like it has automatically
maintained explicit r/w pointers. The other issues, (1)
that ADIOS needs to initialize and finalize the context
before and after disk access work and (2) that it does not

Fig. 1. Architecture of HDFS-AIO.

884 JUNG KYU PARK et al : ADAPTABLE I/O SYSTEM BASED I/O REDUCTION FOR IMPROVING THE PERFORMANCE OF HDFS

support the read-write mode when opening the BP file,
are also handled by this layer. The approaches are
elaborated in the next section.

In addition to the two primary layers, there are several
other JNI-related modules that bridge them together in
order for HDFS to utilize the ADIOS functions. Their
details will be given in Section 3.2.

2. Implementation Details

We have implemented the aforementioned two layers and

made use of JNI to bridge them together, as shown in Fig. 1
[12]. The enhanced HDFS can access data via ADIOS. To
leverage high-performance I/O methods (e.g. MPI-IO,
asynchronous I/O, or data staging), we now can only change
the method-setting item within the external XML file
without any source-code modification or re-compilation.
Additionally, the HDFS APIs are kept intact, and
applications can enable or disable the ADIOS enhancement
by just changing the configuration file of HDFS.

As shown in Fig. 2, we use the JNI direct buffer to
wrap the in-memory chunk allocated at the C side in a
Java-side ByteBuffer object, so that the C-side pointer
and Java-side ByteBuffer object refer to the same
memory region. In other words, this is shared memory
between C and Java. Therefore, no cross-language data
copies occur when the in-memory chunk is manipulated
by ADIOS functions, such as ADIOS read and ADIOS
write. However, the memory region allocated at the C
side is outside the JVM heap. Significant overhead will
be incurred if the Java program copies data into or out of
this region. Therefore, putting (obtaining) small data
segments into (from) the direct ByteBuffer object
synchronously is very time-consuming. By introducing
the shadow buffer, as shown in Fig. 2, we accumulate

small data segments into a large one and execute the
through-JVM copy asynchronously to eliminate this
performance bottleneck from the critical path of HDFS
block reading and writing.

All the chunks are also stored and loaded in a
dedicated thread asynchronously. When the ADIOS close
function is called, all the data still within the memory
buffer has to be flushed onto the disk; then, the metadata
is updated and stored in a BP file as well. This often
makes the ADIOS close function very slow. To reduce
the turnaround time of the client, who starts to write the
second block only after receiving the acknowledgement
that the first block is successfully stored in HDFS, we
also asynchronously close the BP file.

The BPFile object and its I/O streams (i.e.,
BPFileInputStream and BPFileOutputStream) are
implemented based upon the Java-side JNI stubs. The
places to hook these ADIOS-related objects into HDFS
are inside the BlockReceiver, BlockSender, and
FSDataset classes, where FileOutputStream and
FileInputStream objects are originally constructed and
execute the disk access work, respectively. In our
implementation, we hybridize them together in such a
way that the ADIOS enhancement can be disabled or
enabled by the user without changing any source codes.

IV. EVALUATION

1. Experimental Setup

Cluster setup: All the experiments are conducted on a

cluster of five nodes, which are connected with 1-Gigabit
Ethernet. Each node is equipped with four 2.00-GHz
hex-core Intel Xeon E5405 CPUs, 8-GB memory, and
one Western Digital SATA hard-drive featuring 250-GB
storage space.

Hadoop setup: In all experiments, we use Hadoop
version 1.1.2, from which HDFS-AIO is implemented.
As to the deployment of HDFS, the NameNode runs
exclusively on one node, with DataNodes on another four
nodes. The number of replicas and HDFS block size will
be changed for specific experiments.

2. Analysis with Different I/O Patterns

In this section, we investigate the performance of

Fig. 2. Implementation details of HDFS-AIO.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 885

HDFSAIO in comparison with the original HDFS by
using different I/O patterns. For the subsequent
experiments, the HDFS block size is set to 512 MB; and
the I/O method for ADIOS to MPI.

Firstly, we evaluate the writing performance of HDFS-
AIO. During experimentation, each pattern has a specific
number of writing processes, dataset size, and replication
level. We begin with the “single writer” pattern (i.e. one
process on a DataNode issues writing requests). When
the replication number is one, most of the data is stored
locally. As shown in Fig. 3, the performances of HDFS-
AIO and HDFS are very close and increase linearly with
the size of the dataset. However, HDFS-AIO outperforms
HDFS slightly (4%) when the data size increases to
1.2 GB. This is because the asynchronous close operation,
designed for HDFS-AIO, can enable the DataNode to
notify the client of the completion of writing before the
data is even stored onto the disk.

Data blocks are pipelined and stored onto three
different DataNodes for high reliability when the
replication number is configured as three. As shown in
Fig. 3, the improvement of HDFS-AIO is enlarged with
the increment of replication level. It achieves 10%

acceleration when writing 1.2 GB of data. This is also
attributed to the asynchronous close operation. With it,
the downstream DataNode can acknowledge the
upstream one prior to finishing the flushing of data
buffered in the memory, while every DataNode in the
original HDFS replication pipeline has to wait for the
completion of the last POSIX write function call before
notifying its upstream. In theory, the longer the
replication pipeline, the more speedup can be gained by
HDFS-AIO.

Subsequently, we analyze the “multiple writers”
pattern. In contrast with the “single writer” pattern
configured with three replicas, which can also activate
multiple DataNodes during writing, this pattern launches
four writing processes, one per DataNode,
simultaneously and does not introduce interdependence
among DataNodes. In addition, the replication number is
set as one in this experiment. The minimum, maximum,
and average execution times for each data size are all
plotted in Fig. 4. The average time is calculated among
the four parallel writers. As shown, the performance of
HDFS-AIO is slightly better than that of HDFS. The
contention incurred by the metadata management at the
single NameNode offsets the improvement from the
asynchronous close operation. For both, this contention
also leads to dramatic variance of the execution time
among these parallel writers when the dataset size
increases.

Next, we evaluate the reading performance of HDFS-
AIO. The experiment configuration is similar to that for
the writing tests. The chunk size is set to 256 MB. We
conduct the “single reader” test. As shown in Fig. 5, the
performance of HDFS-AIO is much worse than that of
HDFS. To determine why HDFS-AIO is so slow for

Fig. 3. Performance of single writer.

Fig. 4. Performance of multiple writers.

Table 1. Detailed profiling for writing

Server
Data Size Client

Write Close Store

512 MB 6.530s 0.652s 1.418s 8.602s
1024 MB 10.091s 1.146s 2.279s 20..443s

Table 2. Detailed profiling for reading

Server
Data Size Client

Write Close Store

512 MB 7.203s 3.627s 0.427s 2.988s
1024 MB 13.194s 7.597s 4.520s 4.520s

886 JUNG KYU PARK et al : ADAPTABLE I/O SYSTEM BASED I/O REDUCTION FOR IMPROVING THE PERFORMANCE OF HDFS

reading, we dissect its execution time in Table 1, as well
as its writing execution time.

The total execution time instrumented by the client is
placed in the Client column. The execution time of the
operation that is executed on the DataNode is recorded in
the Server column. Specifically, the asynchronous data
storing and loading times are in the Store and Load
columns, respectively. As shown in Table 1, the time
cost by write operation is very small, because the data
just needs moving to the shadow buffer. Then, another
dedicated thread will put the data into the in-memory
chunk and store the chunk to the disk asynchronously
when it becomes full. However, as shown in Table 2, the
time spent on the read operation, which obtains data from
the shadow buffer, is longer than that of data prefetching.

This means the normal data reading flow is blocked by
the asynchronous chunk loading flow often if not always,
even though 256-MB chksize can provide the best
chance for pipelining. Obtaining data from the memory
region outside JVM is one reason for the slow data
prefetching, but the root cause is the reading mechanism
of ADIOS, as the BP file needs to be closed to commit
the completion of the read operation before the variable
value can be used. This inherent restriction makes each
chunk loading very time-consuming, which finally leads
to inefficient HDFS block retrieval. We will address this
restriction in our future work to improve the reading
performance.

3. Analysis with Different I/O Methods

An application using ADIOS is capable of switching

I/O methods without re-compilation. Additionally, one
goal of HDFS-AIO is to provide HDFS with this
capability. Therefore, in this section, we investigate the

flexibility of HDFS-AIO in the utilization of different
I/O methods. ADIOS can use POSIX-IO functions to
access the disk as well. However, in contrast with the
original HDFS, which also uses this I/O method by
default, HDFS-AIO can obtain performance benefits
from the asynchronous store and close operations.

Fig. 6 shows that the performance of POSIX-based
HDFS-AIO is better than that of HDFS and very close to
that of the MPI-based HDFS-AIO. NULL is a special
method. With it, ADIOS drops the data to be written
immediately without touching the disk. The performance
of NULL can be regarded as the performance upper
bound. ADIOS also supports other I/O systems or
techniques (e.g. Dataspaces, DIMES, DataTap, and MPI-
AIO [6]). However, most are not available in the public
version of ADIOS. In a future work, we would like to
evaluate if HDFS-AIO can support most of them.

We performed experiments to see the overall result.
We execute the writing process on the node outside the
storage cluster to remove the possibility that data is
stored locally. As shown in Fig 7, HDFS0-AIO
outperforms HDFS while the data size is changed.
Although the improvement ratio decreases as the data

Fig. 5. Performance of single reader.

Fig. 6. Writing performance of different I/O methods.

Fig. 7. Writing performance on outside the cluster.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.6, DECEMBER, 2016 887

size grows, HDFS-AIO can still achieve up to 32.8%
improvement when writing 512 MB data. This result
shows that our scheme is to replace the disk I/O modules
within DataNode with our customized ADIOS while,
DataNode stores and retrieves data in block unit.

And then we run the reading process on the node
outside the storage cluster. The result shows that HSFS-
AIO is faster than HDFS by as much as 70%. The reason
why the read performance of HDFS-AIO degrades so
quickly when data size grows large is that it tries to reserve
sufficient memory before accessing disk for data; while,
co-locating client with Lustre storage daemons leads to
severe contention on memory resource, which impacts the
performance very negatively. Therefore, we can also
observe better performance of HDFS-AIO when it reads
large dataset outside the cluster, as shown in Fig. 8.

V. CONCLUSION

Hadoop is a successful open-source implementation of
the MapReduce programming model. Thus, we proposed
HDFS-AIO to enhance HDFS with the Adaptive I/O
System (ADIOS), which supports many high-
performance I/O techniques (e.g. data staging,
asynchronous I/O, and collective I/O) and enables HDFS
to select optimal I/O routines and parameter values for a
particular platform without source-code modification and
recompilation.

Accordingly, we customized ADIOS into a chunk-
based storage system, encapsulate it to expose POSIX-
compatible APIs, and utilize JNI to integrate HDFS and
the tailored ADIOS. Overall, our method is feasible and
can improve the performance of HDFS by using
advanced I/O methods.

ACKNOWLEDGMENTS

This work was supported by Institute for Information
& communications Technology Promotion(IITP) grant
funded by the Korea government(MSIP) (No.R0190-15-
2012,High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development)
and also supported by SK telecom.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplied
data processing on large clusters,” OSDI’04, vol.6,
pp.10-10, 2004.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The
google file system,” SOSP’03, pp.29-43, 2003.

[3] The apache hadoop project, http://hadoop.apache.org/.
[4] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki

and C. Jin, “Flexible io and integration for
scientific codes through the adaptable io system
(adios),” CLADE’08, pp.15-25, 2008.

[5] Y. Tian, Z. Liu, S. Klasky, B. Wang, H. Abbasi, S.
Zhou, N. Podhorszki, T. Clune, J. Logan, and W.
Yu, “A lightweight i/o scheme to facilitate spatial
and temporal queries of scientific data analytics,”
MSST’13, 2013.

[6] Adios users manual, http://users.nccs.gov/pnorbert/
ADIOS-UsersManual-1.5.0.pdf.

[7] Mapreduce 2.0 (yarn),
http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[8] H. Abbasi, M. Wolf, and K. Schwan., “Live data
workspace: A fexible, dynamic and extensible
platform for petascale applications,” Cluster’07,
2007.

[9] F. Schmuck and R. Haskin, “Gpfs: A shared-disk
file system for large computing clusters,” FAST’02,
2002.

[10] Lustre file system, http://www.lustre.org.
[11] Posix write, http://linux.die.net/man/2/write.
[12] Java native interface JNI,

http://docs.oracle.com/javase/6/docs/technotes/
guides/ jni.

[13] J. Shafer, S. Rixner, and . L. Cox, “The hadoop
distributed filesystem: Balancing portability and
performance,” ISPASS’10, 2010.

Fig. 8. Reading Performance on outside the cluster.

888 JUNG KYU PARK et al : ADAPTABLE I/O SYSTEM BASED I/O REDUCTION FOR IMPROVING THE PERFORMANCE OF HDFS

[14] Y. Wang, X. Que, W. Yu, D. Goldenberg and D.
Sehgal, “Hadoop acceleration through network
levitated merge,” SC’11, 2011.

[15] Z. Liu, B. Wang, T. Wang, Y. Tian, C. Xu, Y.
Wang, W. Yu, C. A. Cruz, S. Zhou, T. Clune, and
S. Klasky, “Profiling and improving i/o
performance of a large-scale climate scientific
application,” ICCCN’13, 2013.

[16] J. Appavoo, V. Uhlig, A. Stoess, J. Waterlandy, B.
Rosenburgy, R. Wisniewskiy, D. D. Silvay, E. V.
Hensbergeny and U. Steinberg, “Providing a cloud
network infrastructure on a supercomputer,”
HPDC’10, 2010.

[17] Xiaobing, “HadioFS: Improve the Performance of
HDFS by Off-loading I/O to ADIOS,” Auburn
University, 2013.

Jung Kyu Park received the M.S.
and Ph.D. degrees in computer
engineering from Hongik University
in 2002 and 2013, respectively. He
has been a research professor at the
Dankook University since 2014. In
2016, he joined the Research scientist

of School of Electrical and Computer Engineering at the
UNIST. His research interests include operating system,
new memory, embedded system and robotics theory and
its application.

Jaeho Kim received the BS degree
in information and communications
engineering from Inje University,
Gimhae, Korea, in 2004, and the MS
and PhD degrees in computer science
from the University of Seoul, Seoul,
Korea, in 2009 and 2015, respect-

tively. He is currently a postdoctoral researcher in the
School of Electrical and Computer Engineering at
UNIST (Ulsan National Institute of Science and
Technology), Ulsan, Korea. His research interests
include storage systems, operating systems, and
computer architecture.

Sung Min Koo received the B.S.
degree in the Department of Computer
Engineering from Dankook Univer-
sity, Korea, in 2016. He is a student
of unified master’s and Doctor’s
course in Dankook University. His
research interests include operating

system, file system and flash memory.

Seungjae Baek received the BS, MS,
and PhD degrees in computer engi-
neering from Dankook University,
Yongin, South Korea, in 2005, 2007,
and 2010, respectively. He joined
Peromnii Inc., Seoul, South Korea, in
2010, as a start-up member, and

contributed to the definition and development of instant
booting technique. He was a post-doctoral research
associate at the University of Pittsburgh, Pennsylvania,
prior to joining the faculty of the Dankook University in
2014. He is currently a senior research scientist at Korea
Institute of Ocean Science and Technology, from 2016.
His research interests include file system, storage device,
and operating system itself.

