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Abstract—In this paper, we propose a new HDFS-AIO 
framework to enhance HDFS with Adaptive I/O 
System (ADIOS), which supports many different I/O 
methods and enables applications to select optimal 
I/O routines for a particular platform without source-
code modification and re-compilation. First, we 
customize ADIOS into a chunk-based storage system 
so its API semantics can fit the requirement of HDFS 
easily; then, we utilize Java Native Interface (JNI) to 
bridge HDFS and the tailored ADIOS. We use 
different I/O patterns to compare HDFS-AIO and the 
original HDFS, and the experimental results show the 
design feasibility and benefits. We also examine the 
performance of HDFS-AIO using various I/O 
techniques. There have been many studies that use 
ADIOS, however our research is expected to help in 
expanding the function of HDFS.    
 
Index Terms—HDFS, ADIOS, JNI, HADOOP, GFS  

I. INTRODUCTION 

With the advent of the Big Data era, an overwhelming 
amount of data can be generated in our daily life by a 
wide range of computing facilities, from smart phones 
and wearable computing devices to high-end scientific 
computing clusters and giant data centers enabling 
world-wide media and social networking services [14]. 
To extract meaningful knowledge and economic value 
from massive-scale data, MapReduce has evolved as the 

main processing framework since its introduction by 
Google in around 2004 [1]. Inspired by the map and 
reduce functions commonly used in functional 
programming language, the Google MapReduce 
programming model inherits the parallelism 
characteristic and is equipped with a scalable and reliable 
runtime system to parallelize the analysis job to process 
extremely large datasets, which are kept in Google File 
System (GFS), the distributed storage system inside the 
framework [2]. Its simple yet expressive interfaces, 
efficient scalability, and strong fault tolerance have 
motivated a growing number of organizations to build 
their services on the MapReduce framework.  

The success of Google MapReduce in the Big Data era 
motivates the development of Hadoop MapReduce, the 
most popular open-source implementation of MapReduce, 
and Hadoop Distributed File System (HDFS), the 
counterpart of GFS [3]. Hadoop MapReduce includes 
two categories of components: a JobTracker and many 
TaskTrackers. The JobTracker commands TaskTrackers 
to process data through the two functions, i.e., map and 
reduce, which users define according to particular 
analysis requirements. 

Large-scale scientific applications (e.g. global 
warming modeling and combustion simulation programs) 
often generate an extremely massive volume of data [15, 
16]. The gap between the I/O speed and computing 
power of high-end clusters motivates many research 
efforts on the improvement of storage techniques [5]. 
However, these techniques are often based upon 
underlying system supports; hence, they are not always 
compatible with each other. Therefore, the application 
using one particular I/O technique has to be modified 
when ported to another platform, and the cost to change 
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the long-term developed and optimized scientific 
program might be high. This issue is closely related to 
what we just stated about HDFS. To address this, 
Adaptive I/O System (ADIOS) has been designed [4]. 
ADIOS, as middleware, supports many different I/O 
methods, data formats, and parallel file systems. Most 
importantly, it enables the upper application to select 
optimal I/O routines for a particular platform without 
source-code modification and re-compilation. The 
ADIOS interfaces for applications to use are as simple as 
POSIX ones, although not compatible; new storage 
systems or techniques can be hooked into them very 
easily. ADIOS has been widely adopted in the HPC 
community due to its simplicity, extensibility, and 
efficiency.  

Therefore, to enable HDFS to fully utilize the power 
of HPC clusters, we propose a new HDFS-AIO 
framework to enhance HDFS with ADIOS, so that the 
platform specific performance-enhancing features and 
various high-performance I/O techniques can be 
leveraged by HDFS without the cost incurred by source-
code modification. Specifically, on the one hand, we 
customize ADIOS into a chunk-based storage system and 
implement a set of POSIX-compatible interfaces for it; 
on the other hand, we use JNI to enable HDFS to use the 
functions of the tailored ADIOS through this new set of 
POSIX APIs. To investigate the feasibility and 
advantages of our design, we conduct a set of 
experiments to compare HDFS-AIO and the original 
HDFS. For the current system prototype, the data-writing 
performance can be improved by up to 10%. In addition, 
we analyze the performance of HDFS-AIO configured 
with different I/O methods (e.g. POSIXIO and MPI-IO) 
to evaluate if HDFS can benefit from the edibility of 
ADIOS.  

The rest of the paper is organized as follows. Chapter 
II provides the background for this work. We then 
describe customizing ADIOS and integrating it with 
HDFS via JNI in Chapter III. Chapter IV analyzes the 
experimental results. Finally, we conclude the paper. 

II. RELATED WORKS 

In this chapter, we describe the background of this 
work. First, we present the general framework of the 
Hadoop Ecosystem; then, we focus on HDFS, which is 

modified and enhanced in this work. After the 
explanation of the runtime mechanism of HDFS for data 
reading and writing, we introduce ADIOS in terms of its 
architecture and data file structure. Finally, we discuss 
Java Native Interface (JNI), which is used in our system 
to integrate HDFS and ADIOS.  

 
1. Hadoop  

 
The Hadoop framework is designed for data-intensive 

distributed applications. Essentially, it implements the 
computational model MapReduce, in which each job is 
divided into many parallel tasks assigned to a cluster of 
nodes [1]. These tasks are categorized into two types: 
MapTask and ReduceTask. These are responsible for the 
execution of user-defined map and reduce functions to 
process data in an embarrassingly parallel manner. Loss 
of data and computation failure due to system glitches 
are common in large-scale distributed computing 
scenarios. Therefore, to make Hadoop easy to program, 
the reliability issues of both computation and data are 
handled within the framework transparently and hidden 
from the application programmers.  

To achieve the required core function and ease of 
programmability, several subsystems are provided within 
the whole Hadoop Ecosystem. The subsystem, Hadoop 
MapReduce, implements the data-processing framework, 
which encapsulates the computational model MapReduce. 
One JobTracker and many TaskTrackers are present in 
this layer. To be specific, the JobTracker accepts a job 
from a client, divides the job into tasks according to the 
input splits stored within HDFS, and assigns them to 
TaskTrackers with the awareness of data locality. In the 
meantime, TaskTrackers, one per slave node, take full 
control of the node-local computing resource via slot 
abstraction. Two kinds of slots are defined: map slots and 
reduce slots. On each TaskTracker, the numbers of both 
slots are configurable. Additionally, they can be regarded 
as static resource containers for executing corresponding 
tasks: MapTask or ReduceTask. YARN (MRv2) is the 
second generation of the Hadoop framework, which 
splits the resource management and job scheduling 
functions into different components. In contrast, these 
functions are closely tangled inside JobTracker in the 
first generation. Under the processing framework is the 
storage subsystem: HDFS [3]. We discuss its structure in 
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detail here and its runtime feature in the next section. 
HDFS consists of one NameNode and several DataNodes. 
The NameNode is responsible for building and managing 
the file system name space, which is used to map each 
file name to the locations of corresponding file data. It is 
not a single location, but a set of locations because the 
file is broken into a list of equal-sized blocks that are 
perhaps assigned to different DataNodes. Furthermore, 
on the DataNode, each block is kept as a single file, with 
a few replicas dispersed on other DataNodes to ensure 
high data reliability.  

 
2. Hadoop Distributed File System (HDFS) 

 
HDFS plays a critical role in the Hadoop Ecosystem 

[13]. In this section, we focus on its runtime features. 
When accessing data, the HDFS clients only 
communicate with NameNode for necessary metadata. 
After that, most subsequent operations are performed 
between clients and DataNodes directly.  

To read a file, the client inquiries NameNode for the 
location of each block belonging to the file. If permitted 
to access it, it will acquire the information of a set of 
DataNodes, which keep the file blocks. Because of 
replication, each block might reside on several 
DataNodes, and the client will select the nearest one, in 
terms of network hops, to obtain the block. During the 
read process, no intervention from NameNode is needed, 
avoiding potential performance bottleneck. In addition, 
HDFS supports the random seek operation for reads.  

To write a file, the client first asks the NameNode to 
allocate space from the storage cluster to keep the user 
file. It will receive a list of DataNodes for each file block. 
Additionally, a replication pipeline is built with this set 
of DataNodes to store the block. The client then splits the 
block into small packets and transmits them to the first 
DataNode in the pipeline; this DataNode persistently 
stores each packet and mirrors it in the downstream 
DataNode.  

The “store and mirror” action is executed by all the 
DataNodes in the pipeline; when the acknowledgement 
from the downstream DataNode is received, the 
DataNode will notify the upstream DataNode of the 
success of receiving the packet, and finally the first 
DataNode in the pipeline will notify the client. The next 
block will not be written until all the packets from the 

current block are received by all the DataNodes in the 
pipeline. In contrast with the read operations, HDFS only 
supports sequential write operations. By default, each 
block has three replicas. Thus, to balance data reliability 
and access throughput, HDFS writes the first replica on 
the local node if the client runs on DataNode; the second 
one on the local rack; and the last one on a remote rack.  

 
3. Adaptive I/O System (ADIOS) 
 

ADIOS is highly configurable and lightweight I/O 
middleware [4]. It is not a runtime system, but a library. 
Applications need to embed the APIs exposed by this 
middleware to access the data on the disk. By making use 
of ADIOS, the application can switch among different 
I/O methods and tune parameters that might impact I/O 
performance without source-code modification and 
recompilation. These features are particularly beneficial 
to scientific applications, which often require a long time 
to develop, optimize, and verify, and is hard to port to 
different platforms. 

However, with ADIOS, the scientific application can 
be regarded as a block-box when ported or tuned 
according to the specific characteristics of underlying 
platforms and even high-level requirements. On the other 
hand, to achieve wide adoption in the HPC community, 
ADIOS supports many advanced I/O methods (e.g. 
synchronous MPI-IO, collective MPI-IO, and 
asynchronous I/O) using the DataTap system [8]; many 
high-performance file systems (e.g. GPFS [9] and Lustre 
[10]); as well as several different data formats (e.g. 
NetCDF, HDF-5, and its native BP format [4]), which 
will be described later. However, it should be noted that 
though ADIOS APIs are as simple as POSIX ones, they 
are not POSIX-compatible, which makes this work very 
challenging. 

III. DESIGN AND IMPLEMENTATION 

In this section, we start with the description of our new 
framework, HDFS-AIO, which is designed to enhance 
HDFS by offloading its disk I/O to ADIOS. Then, we 
propose an approach to customize ADIOS. Based on the 
customization, we wrap the original ADIOS APIs into a 
set of POSIX-compatible ones, upon which the 
modification within HDFS is dependent. At the end of 
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this chapter, we summarize the constituent components, 
which HDFS needs to leverage the ADIOS functions.  

Previous work also used ADIOS framework for 
improving the performance of HDFS [17]. However, the 
difference of work is that the study divided big data file 
to several files and then has read the file with I/O stream. 
We used the scheme that enables HDFS to store data 
blocks into BP file as variables. 

 
1. The Architecture of HDFS-AIO 

 
Fig. 1 illustrates the general architecture of our design. 

We keep the HDFS APIs intact, while enhancing HDFS 
to utilize the efficient and flexible ADIOS. Two extra 
layers are introduced between HDFS and ADIOS to 
integrate them.  

The layer inside HDFS includes the components 
encapsulating the BP file and its I/O streams. In the 
existing implementation of HDFS, the file for storing the 
data block is abstracted as a plain byte stream. File, 
FileInputStream, and FileOutputStream are utilized to 
access these disk files. There is no such hierarchical 
structure within them as in BP files, whose structure is 
presented in Section 2.3. If we construct an ordinary file 
object upon a BP file via a new File(), the operations, 
such as obtain file size or seek in file, will behave 
abnormally. Additionally, the BP file only supports the 
open modes “w” (write-only), “r” (read-only), and “a” 
(write-only without erasing existing content). Therefore, 
we design and implement a dedicated file object (i.e. 
BPFile) according to the specific structure of the BP file.  

However, it is not sufficient to use only an abstraction 
of the static file structure. It will not work as expected to 
access the BP file via FileInputStream or 

FileOutputStream, which is designed for a byte stream-
based file, because the runtime states, like r/w pointers, 
are supposed to be maintained in a manner matching the 
underlying file abstraction. Therefore, we also realize the 
I/O streams corresponding to the BP file (i.e. 
BPFileInputStream and BPFileOutputStream).  

The layers that encapsulate ADIOS consist of the 
components to transform the native ADIOS APIs into 
POSIX-compatible ones, which enable the 
implementation of the Java-side relevant objects 
mentioned above. The gap of the interfaces’ semantics 
between ADIOS and POSIX makes it challenging to 
accomplish this transformation. We use the write 
operation as an example to describe this issue.  

In the POSIX standard, the write interface is specified 
as “ssize t write (int fd, const void *buf, size t count),” 
which means writing up to count bytes from the buffer 
pointed by buf to the file referred to by the file descriptor 
fd [11]. The amount of bytes to store cannot be known 
before the interface is called. Additionally, an explicit 
writing pointer is maintained, which is incremented 
automatically after each execution of this operation. 
However, the write interface provided by ADIOS is “int 
adios write (int64 t hdlr, char *var name, void *var 
value)” [1]. hdlr is a handler pointing to an internal data 
structure, which includes the context information (e.g. 
the file descriptor of the BP file, I/O buffers, and a set of 
offsets for variables and attributes). The content to write 
is in a contiguous memory space pointed by the var value. 
The var name passed to this function should correspond 
to the name in the variable definition, which is listed in 
the XML file. Within the variable definition, the size of 
the var value is also configured beforehand. Because the 
variables are defined before the application runs, their 
offsets in the file can be calculated even before writing is 
executed, which enables ADIOS to store these variables 
via their names without maintaining an explicit writing 
pointer. 

The read operation has a similar difference (i.e. 
POSIX has an explicit reading pointer, while ADIOS 
locates content by variable names). In fact, simply 
speaking, our method for handling the semantics gap is 
to tailor ADIOS to work like it has automatically 
maintained explicit r/w pointers. The other issues, (1) 
that ADIOS needs to initialize and finalize the context 
before and after disk access work and (2) that it does not 

 

Fig. 1. Architecture of HDFS-AIO. 
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support the read-write mode when opening the BP file, 
are also handled by this layer. The approaches are 
elaborated in the next section. 

In addition to the two primary layers, there are several 
other JNI-related modules that bridge them together in 
order for HDFS to utilize the ADIOS functions. Their 
details will be given in Section 3.2.  

 
2. Implementation Details  

 
We have implemented the aforementioned two layers and 

made use of JNI to bridge them together, as shown in Fig. 1 
[12]. The enhanced HDFS can access data via ADIOS. To 
leverage high-performance I/O methods (e.g. MPI-IO, 
asynchronous I/O, or data staging), we now can only change 
the method-setting item within the external XML file 
without any source-code modification or re-compilation. 
Additionally, the HDFS APIs are kept intact, and 
applications can enable or disable the ADIOS enhancement 
by just changing the configuration file of HDFS.  

As shown in Fig. 2, we use the JNI direct buffer to 
wrap the in-memory chunk allocated at the C side in a 
Java-side ByteBuffer object, so that the C-side pointer 
and Java-side ByteBuffer object refer to the same 
memory region. In other words, this is shared memory 
between C and Java. Therefore, no cross-language data 
copies occur when the in-memory chunk is manipulated 
by ADIOS functions, such as ADIOS read and ADIOS 
write. However, the memory region allocated at the C 
side is outside the JVM heap. Significant overhead will 
be incurred if the Java program copies data into or out of 
this region. Therefore, putting (obtaining) small data 
segments into (from) the direct ByteBuffer object 
synchronously is very time-consuming. By introducing 
the shadow buffer, as shown in Fig. 2, we accumulate 

small data segments into a large one and execute the 
through-JVM copy asynchronously to eliminate this 
performance bottleneck from the critical path of HDFS 
block reading and writing.  

All the chunks are also stored and loaded in a 
dedicated thread asynchronously. When the ADIOS close 
function is called, all the data still within the memory 
buffer has to be flushed onto the disk; then, the metadata 
is updated and stored in a BP file as well. This often 
makes the ADIOS close function very slow. To reduce 
the turnaround time of the client, who starts to write the 
second block only after receiving the acknowledgement 
that the first block is successfully stored in HDFS, we 
also asynchronously close the BP file.  

The BPFile object and its I/O streams (i.e., 
BPFileInputStream and BPFileOutputStream) are 
implemented based upon the Java-side JNI stubs. The 
places to hook these ADIOS-related objects into HDFS 
are inside the BlockReceiver, BlockSender, and 
FSDataset classes, where FileOutputStream and 
FileInputStream objects are originally constructed and 
execute the disk access work, respectively. In our 
implementation, we hybridize them together in such a 
way that the ADIOS enhancement can be disabled or 
enabled by the user without changing any source codes.  

IV. EVALUATION 

1. Experimental Setup 
 
Cluster setup: All the experiments are conducted on a 

cluster of five nodes, which are connected with 1-Gigabit 
Ethernet. Each node is equipped with four 2.00-GHz 
hex-core Intel Xeon E5405 CPUs, 8-GB memory, and 
one Western Digital SATA hard-drive featuring 250-GB 
storage space.  

Hadoop setup: In all experiments, we use Hadoop 
version 1.1.2, from which HDFS-AIO is implemented. 
As to the deployment of HDFS, the NameNode runs 
exclusively on one node, with DataNodes on another four 
nodes. The number of replicas and HDFS block size will 
be changed for specific experiments. 

 
2. Analysis with Different I/O Patterns 

 
In this section, we investigate the performance of 

 

Fig. 2. Implementation details of HDFS-AIO. 
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HDFSAIO in comparison with the original HDFS by 
using different I/O patterns. For the subsequent 
experiments, the HDFS block size is set to 512 MB; and 
the I/O method for ADIOS to MPI.  

Firstly, we evaluate the writing performance of HDFS- 
AIO. During experimentation, each pattern has a specific 
number of writing processes, dataset size, and replication 
level. We begin with the “single writer” pattern (i.e. one 
process on a DataNode issues writing requests). When 
the replication number is one, most of the data is stored 
locally. As shown in Fig. 3, the performances of HDFS-
AIO and HDFS are very close and increase linearly with 
the size of the dataset. However, HDFS-AIO outperforms 
HDFS slightly (4%) when the data size increases to 
1.2 GB. This is because the asynchronous close operation, 
designed for HDFS-AIO, can enable the DataNode to 
notify the client of the completion of writing before the 
data is even stored onto the disk. 

Data blocks are pipelined and stored onto three 
different DataNodes for high reliability when the 
replication number is configured as three. As shown in 
Fig. 3, the improvement of HDFS-AIO is enlarged with 
the increment of replication level. It achieves 10% 

acceleration when writing 1.2 GB of data. This is also 
attributed to the asynchronous close operation. With it, 
the downstream DataNode can acknowledge the 
upstream one prior to finishing the flushing of data 
buffered in the memory, while every DataNode in the 
original HDFS replication pipeline has to wait for the 
completion of the last POSIX write function call before 
notifying its upstream. In theory, the longer the 
replication pipeline, the more speedup can be gained by 
HDFS-AIO. 

Subsequently, we analyze the “multiple writers” 
pattern. In contrast with the “single writer” pattern 
configured with three replicas, which can also activate 
multiple DataNodes during writing, this pattern launches 
four writing processes, one per DataNode, 
simultaneously and does not introduce interdependence 
among DataNodes. In addition, the replication number is 
set as one in this experiment. The minimum, maximum, 
and average execution times for each data size are all 
plotted in Fig. 4. The average time is calculated among 
the four parallel writers. As shown, the performance of 
HDFS-AIO is slightly better than that of HDFS. The 
contention incurred by the metadata management at the 
single NameNode offsets the improvement from the 
asynchronous close operation. For both, this contention 
also leads to dramatic variance of the execution time 
among these parallel writers when the dataset size 
increases. 

Next, we evaluate the reading performance of HDFS-
AIO. The experiment configuration is similar to that for 
the writing tests. The chunk size is set to 256 MB. We 
conduct the “single reader” test. As shown in Fig. 5, the 
performance of HDFS-AIO is much worse than that of 
HDFS. To determine why HDFS-AIO is so slow for 

 

Fig. 3. Performance of single writer. 
 

 

Fig. 4. Performance of multiple writers. 
 

Table 1. Detailed profiling for writing 

Server 
Data Size Client 

Write Close Store 

512 MB 6.530s 0.652s 1.418s 8.602s 
1024 MB 10.091s 1.146s 2.279s 20..443s 

 
Table 2. Detailed profiling for reading 

Server 
Data Size Client 

Write Close Store 

512 MB 7.203s 3.627s 0.427s 2.988s 
1024 MB 13.194s 7.597s 4.520s 4.520s 
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reading, we dissect its execution time in Table 1, as well 
as its writing execution time.  

The total execution time instrumented by the client is 
placed in the Client column. The execution time of the 
operation that is executed on the DataNode is recorded in 
the Server column. Specifically, the asynchronous data 
storing and loading times are in the Store and Load 
columns, respectively. As shown in Table 1, the time 
cost by write operation is very small, because the data 
just needs moving to the shadow buffer. Then, another 
dedicated thread will put the data into the in-memory 
chunk and store the chunk to the disk asynchronously 
when it becomes full. However, as shown in Table 2, the 
time spent on the read operation, which obtains data from 
the shadow buffer, is longer than that of data prefetching. 

This means the normal data reading flow is blocked by 
the asynchronous chunk loading flow often if not always, 
even though 256-MB chksize can provide the best 
chance for pipelining. Obtaining data from the memory 
region outside JVM is one reason for the slow data 
prefetching, but the root cause is the reading mechanism 
of ADIOS, as the BP file needs to be closed to commit 
the completion of the read operation before the variable 
value can be used. This inherent restriction makes each 
chunk loading very time-consuming, which finally leads 
to inefficient HDFS block retrieval. We will address this 
restriction in our future work to improve the reading 
performance.  

 
3. Analysis with Different I/O Methods  

 
An application using ADIOS is capable of switching 

I/O methods without re-compilation. Additionally, one 
goal of HDFS-AIO is to provide HDFS with this 
capability. Therefore, in this section, we investigate the 

flexibility of HDFS-AIO in the utilization of different 
I/O methods. ADIOS can use POSIX-IO functions to 
access the disk as well. However, in contrast with the 
original HDFS, which also uses this I/O method by 
default, HDFS-AIO can obtain performance benefits 
from the asynchronous store and close operations. 

Fig. 6 shows that the performance of POSIX-based 
HDFS-AIO is better than that of HDFS and very close to 
that of the MPI-based HDFS-AIO. NULL is a special 
method. With it, ADIOS drops the data to be written 
immediately without touching the disk. The performance 
of NULL can be regarded as the performance upper 
bound. ADIOS also supports other I/O systems or 
techniques (e.g. Dataspaces, DIMES, DataTap, and MPI-
AIO [6]). However, most are not available in the public 
version of ADIOS. In a future work, we would like to 
evaluate if HDFS-AIO can support most of them. 

We performed experiments to see the overall result. 
We execute the writing process on the node outside the 
storage cluster to remove the possibility that data is 
stored locally. As shown in Fig 7, HDFS0-AIO 
outperforms HDFS while the data size is changed. 
Although the improvement ratio decreases as the data 

 

Fig. 5. Performance of single reader. 
 

 

Fig. 6. Writing performance of different I/O methods. 
 

 

Fig. 7. Writing performance on outside the cluster. 
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size grows, HDFS-AIO can still achieve up to 32.8% 
improvement when writing 512 MB data. This result 
shows that our scheme is to replace the disk I/O modules 
within DataNode with our customized ADIOS while, 
DataNode stores and retrieves data in block unit. 

And then we run the reading process on the node 
outside the storage cluster. The result shows that HSFS-
AIO is faster than HDFS by as much as 70%. The reason 
why the read performance of HDFS-AIO degrades so 
quickly when data size grows large is that it tries to reserve 
sufficient memory before accessing disk for data; while, 
co-locating client with Lustre storage daemons leads to 
severe contention on memory resource, which impacts the 
performance very negatively. Therefore, we can also 
observe better performance of HDFS-AIO when it reads 
large dataset outside the cluster, as shown in Fig. 8. 

V. CONCLUSION 

Hadoop is a successful open-source implementation of 
the MapReduce programming model. Thus, we proposed 
HDFS-AIO to enhance HDFS with the Adaptive I/O 
System (ADIOS), which supports many high-
performance I/O techniques (e.g. data staging, 
asynchronous I/O, and collective I/O) and enables HDFS 
to select optimal I/O routines and parameter values for a 
particular platform without source-code modification and 
recompilation.  

Accordingly, we customized ADIOS into a chunk-
based storage system, encapsulate it to expose POSIX-
compatible APIs, and utilize JNI to integrate HDFS and 
the tailored ADIOS. Overall, our method is feasible and 
can improve the performance of HDFS by using 
advanced I/O methods. 
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