DOI QR코드

DOI QR Code

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

  • Lim, Woo-Young (Institute of Engineering Research, Seoul National University) ;
  • Hong, Sung-Gul (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2016.03.17
  • Accepted : 2016.04.26
  • Published : 2016.06.30

Abstract

One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported UHPFRC beams were performed. Test results showed that the steel fibers substantially improved of the shear resistance of the UHPFRC beams. Also, shear reinforcement had a synergetic effect on enhancement of ductility. Even though the spacing of shear reinforcement exceeds the spacing limit recommended by current design codes (ACI 318-14), shear strength of UHPFRC beam was noticeably greater than current design codes. Therefore, the spacing limit of 0.75d can be allowed for UHPFRC beams.

Acknowledgement

Supported by : Ministry of Land, Infrastructure and Transport (MOLIT), Korea Agency for Infrastructure Technology Advancement (KAIA)

References

  1. ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (318R-14). Farmington Hills, MI: American Concrete Institute.
  2. ACI Committee 544. (1988). Design considerations for steel fiber reinforced concrete. ACI Structural Journal, 85(5), 1-18.
  3. Alaee, F. J., & Karihaloo, B. L. (2003). Retrofitting of reinforced-concrete beams with CARDIFRC. Journal of Composites for Construction ASCE, 7(3), 174-186. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(174)
  4. American Association of State Highway and Transportation Officials. (2004). AASHTO LRFD Bridge Design Specification (3rd ed.). Washington, DC: AASHTO.
  5. Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, 89(2), 176-184.
  6. Association Francaise du Genil Civil (AFGC). (2013). Betons fibres aultra-hautes performances, Association Francaise du Genil Civil.
  7. ASTM A370-14. (2014). Standard test methods and definitions for mechanical testing of steel products. West Conshohocken, PA: ASTM International.
  8. ASTM C39/C39M-05. (2005). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
  9. Baby, F., Marchand, P., & Toutlemonde, F. (2014). Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation. Journal of Structural Engineering ASCE, 140(5), 04013111. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907
  10. CSA A23.3-04. (2004). Design of concrete structures. Rexdale, ON: Canadian Standard Association.
  11. EN 1992-1-1. (2004). Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings. British Standards Institution.
  12. Ezeldin, S., & Balaguru, P. N. (1997). Normal- and high-strength fiber-reinforced concrete under compression. ACI Material Journal, 94(4), 286-290.
  13. Fanella, D. A., & Naaman, A. E. (1985). Stress-strain properties of fiber reinforced mortar in compression. ACI Journal, 82(4), 475-483.
  14. Farhat, F. A., Nicolaides, D., Kanellopoulos, A., & Karihaloo, B. L. (2007). High performance fiber-reinforced cementitious composite (CARDIFRC)-performance and application to retrofitting. Engineering Fracture Mechanics, 74, 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
  15. Japan Society of Civil Engineers (JSCE). (2004). Recommendations for Design and Construction of Ultra-High Strength Fiber Reinforced Concrete Structures, draft.
  16. Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96(2), 282-289.
  17. Korea Concrete Institute. (2012). Design recommendations for ultra-high performance concrete (K-UHPC), KCI-M-12-003, Korea (in Korean).
  18. Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. B. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
  19. Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89(5), 499-508.
  20. Mansur, M. A., Ong, K. C. G., & Paramsivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. Journal of Structural Engineering ASCE, 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  21. MC2010. (2012). fib Model Code for Concrete Structures 2010, federation internationale du beton, Lausanne, Switzerland: Ernst & Sohn.
  22. Meda, A., Mostosi, S., & Riva, P. (2014). Sehar strengthening of reinforced concrete beam with high-performance fiber-reinforced cementitious composite jacketing. ACI Structural Journal, 111(5), 1059-1067.
  23. Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84(3), 216-227.
  24. Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. Journal of Structural Engineering ASCE, 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  25. Pan, A., & Moehle, J. P. (1989). Lateral displacement ductility of reinforced concrete flat plates. ACI Structural Journal, 86(3), 250-258.
  26. Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile Behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34, 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  27. Parra-Montesinos, G. J. (2006). Shear strength of beams with deformed steel fibers. Concrete International, 28(11), 57-66.
  28. Rossi, P., Arca, A., Parant, E., & Fakhri, P. (2005). Bending and compressive behaviors of a new cement composite. Cement and Concrete Research, 35, 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043
  29. Sharma, A. K. (1986). Shear strength of steel fiber reinforced concrete beams. ACI Journal, 83(4), 624-628.
  30. Voo, Y. L., Poon, W. K., & Foster, S. J. (2010). Sheear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering ASCE, 136(11), 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  31. Wafa, F. F., & Ashour, S. A. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Materials Journal, 89(5), 440-455.
  32. Wille, K., Kim, D. J., & Naaman, A. E. (2011a). Strain hardening UHP-FRC with low fiber contents. Materials and Structures, 44, 583-598. https://doi.org/10.1617/s11527-010-9650-4
  33. Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011b). Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way. ACI Materials Journal, 108(6), 46-54.