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Abstract: High-early-strength-concrete (HESC) made of Type III cement reaches approximately 50–70 % of its design com-

pressive strength in a day in ambient conditions. Experimental investigations were made in this study to observe the effects of

temperature, curing time and concrete strength on the accelerated development of compressive strength in HESC. A total of 210

HESC cylinders of 100 9 200 mm were tested for different compressive strengths (30, 40 and 50 MPa) and different curing

regimes (with maximum temperatures of 20, 30, 40, 50 and 60 �C) at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h).

From a series of regression analyses, a generalized rate-constant model was presented for the prediction of the compressive

strength of HESC at an early age for its future application in precast prestressed units with savings in steam supply. The average

and standard deviation of the ratios of the predictions to the test results were 0.97 and 0.22, respectively.

Keywords: high-early-strength concrete, compressive strength, curing temperature.

List of symbols
A Frequency factor
E Activation energy in general
Eeq Activation energy (=33,500 J/mol) used in the

estimation of teq
f
0
cd Design compressive strength
k Rate constant of concrete
kr Rate constant at reference temperature, Tr
R Universal gas constant (=8.314 J/mol/K)
r Reaction coefficient
S Compressive strength of concrete at teq
Su Limiting strength of concrete
Tc Temperature of concrete
Tmax Desired maximum temperature
Tr Reference temperature
t Real elapsed time
Dt Time interval
teq Equivalent age
t0r Age at the start of strength development at the

reference temperature

1. Introduction

Steam curing accelerates hydration of concrete and allows
the concrete to reach prestress levels of compressive strength
in a short time. For precast prestressed concrete industry,
method of steam curing is widely applied to concrete
members made of Type I cement on behalf of the massive
production and accelerated production rate in response to
demand (Erdoǧdu and Kurbetci 1998; Erdem et al. 2003;
Hanson 1963; Higginson 1961).
In architectural construction industry, a typical 3-6-3 cur-

ing regimes with a 24-h turnover period were typically
exercised for the one unit of precast prestressed members
made of Type I cement. It consists of 3-h preparation fol-
lowed by 18 h of curing regime and 3-h cleaning periods.
The 18-h curing regime is sequentially processed with a 3-h
of delay followed by a 12-h of heat treatment, and a 3-h
cooling period. The 12-h of steam curing comprises the
temperature rise, constant maximum temperature, and
descending temperature periods (ACI 517.2-2R-87 1992;
Hanson 1963; Ramezanianpour et al. 2013). The prestressed
strands are released at a partial completion of curing at about
15–18 h after concrete casting. At the release of prestressed
strand, the concrete stresses induced by prestress transfer
should be less than or equal to the allowable stresses (ACI
318-08 2008). That requires the compressive strength of
concrete to reach approximately 70 % of the design com-
pressive strength (f

0
cd in MPa).

It has been known that the curing temperature and elapsed
curing time have a significant effect on the strength devel-
opment and its rate for concrete made of Type I (Oztekin
1984). In spite of the beneficial effects of steam curing on
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the acceleration of early strength development of concrete,
steam curing can be regarded as costly and anti-eco-friendly
as it consumes fuel and leaves carbon dioxide footprint
during curing process by emitting.
The most beneficial effect of HESC made of Type III

cement is its rapid development of compressive strength.
About 50–70 and 100 % of its f

0
cd of HESC can be reached

in 1 and 7 days after casting at ambient temperature,
respectively. If HESC is used for precast prestressed mem-
bers, the accelerated development of compressive strength in
HESC, compared with normal concrete with Type I cement,
would require less fuel consumption and lessen the amount
of carbon dioxide emissions by enabling a reduced steam
curing regime.
For a rational and economical scheduling of steam curing

regime, an appropriate measure is needed for the develop-
ment of compressive strength of HESC at different curing
conditions with different curing temperatures and ages. In
this research, experimental investigations were performed to
examine the effects of curing temperature, age and some
other influential factors on the development of compressive
strength in HESC with an emphasis on its strength devel-
opment within 7 days (168 h). A series of regression anal-
yses were performed on the test data to develop a
generalized model for the prediction of compressive strength
in HESC.

2. Experiments

2.1 Mix Proportions
Table 1 presents chemical compositions of Type III

cement used in this study. A relatively higher chemical
compositions of SO3, C3A and C3S in Type III cement with
higher Blaine value than those in Type I cement contribute to
a rapid development of concrete compressive concrete
(Schindler and Folliard 2005). Mix proportions for the
HESC used in this study were summarized in Table 2. Three
different f

0
cd of 30, 40, and 50 MPa were considered. Their

target slump and air content were 200 ± 20 mm and
3 ± 1 %, respectively. Maximum size, specific gravity and
fineness modulus of crushed gravel were 20 mm, 2.6 g/cm3

and 6.8, respectively. The specimens were first washed in
order to minimize the effect of relative cleanliness on con-
crete properties in both the fresh and hardened states. River
sand was used as the fine aggregate, which had specific
gravity of 2.6 g/cm3 and a fineness modulus of 2.2. Super-
plasticizer (SP) was used to increase workability.

2.2 Preparation of the Specimens
Mixing and specimen preparation were conducted at room

temperature and 50 ± 5 % relative humidity. Concrete is
mixed by a 120-l capacity pan mixer. After 1 min of dry
mixing with coarse aggregate, fine aggregate and cement,
water and SP were added to the mixture in sequence and
mixed for an additional 2 min. After mixing, the slump and
air contents of the fresh concrete were measured according
to the standard test specified in ASTM C143/C143M-10
(2010) and ASTM C231/C231M-14 (2014).
After obtaining the desired slump and air contents, the

concrete was cast into 100 9 200 mm plastic cylindrical
molds. In order to avoid agglutination between the mold and
the concrete, the molds were cleaned in advance and brushed
with a thin film of form oil. As illustrated in Fig. 1, water
temperature contained in a plastic water bath was controlled
to adjust the curing temperature of the cylinder according to
the predetermined curing regimes. The water temperature
was monitored with a thermocouple placed in the water and
manually adjusted using a coil-type water heater submerged
in the water bath. Using a thermocouple inserted into the
mid-depth of the cylinder, change of concrete temperature
during the curing period was measured.
Each batch cast fourteen cylinders. Before submerging the

cylindrical molds containing fresh HESC into the curing
water, each mold was placed into a waterproof plastic bag,
and the top surface was covered with a plastic sheet to
prevent evaporation of the water in the mold. The cylindrical
molds were then placed into the water bath at the reference
temperature of Tr (=20 �C in this study) for 3 h to allow the
initial setting of HESC. After that, the water temperature was
increased at a rate of 10 �C/h from 20 �C to the desired
maximum temperature (Tmax).
Preliminary tests showed that HESC developed a com-

pressive strength close to its f
0
cd value in 5 days and

exceeds f
0
cd value in 7 days of curing in an ambient

environment. Based on that observation, the compressive
strength of HESC was measured to the equivalent age of
7 days (168 h). Five different Tmax of 20, 30, 40, 50 and
60 �C were considered in order to observe the effect of
maximum temperature on the development of compres-
sive strength in HESC at 7 different equivalent ages, 9, 12,
18, 24, 36, 100 and 168 h. The equivalent age (teq in h) in
Eq. (1), suggested by Freiesleben and Pedersen (1977),
was used in this study. Equation (1) is also recommended
in ASTM C 1074-04 (2004). It takes into account the ratio
of the maturity at concrete temperature (Tc in �C) to the
one at Tr:

Table 1 Chemical and physical properties of Type III cement used in this study.

Chemical composition (%) Mineral composition (%) Density
(g/cm3)

Blaine
(cm2/g)CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O SO3 C3S C2S C3A C4AF

62.2 19.5 5.9 3.1 2.8 0.2 0.8 4.1 49.2 18.8 10.3 9.5 3.12 4600
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teq ¼
Xt
0

e�
Eeq
R

1
Tcþ273� 1

Trþ273ð Þ � Dt ð1Þ

where, t is the real elapsed time (h), Dt is the time interval
(h), Eeq is the activation energy (=33,500 J/mol) used in the
estimation of teq, R is the universal gas constant
(=8.314 J/mol/K) and Tc is the temperature of concrete (�C).
Figure 2a illustrates the typical curing regime adopted in

this study, which is composed of 3-h delay at ambient
temperature, followed by different periods of temperature
increase, maximum constant temperature, temperature
decrease, and cooling at ambient temperature. All curing
regimes began with a 3-h delay at 20 �C for initial setting of
the fresh concrete before the application of any additional
heat. The rates of temperature increase and decrease in the
concrete were maintained at 10 and -10 �C/h, respectively,
to prevent undesirable porosity or cracking (AASHTO 2004;
Alexanderson 1972; CSA-A23.4-09 2014).
Table 3 lists 15 sets of test specimens. Test specimens are

labeled using the form HCSn1n2, where HC stands for
HESC cylinder, S for f

0
cd value (S = L, M and H for

f
0
cd = 30, 40 and 50 MPa, respectively) and n1n2 indicates
Tmax. For each set for the identical conditions of f

0
cd and Tmax,

a total of 14 cylinders -7 sets of two replicas cast for the
measurement of compressive strength at 7 different equiva-
lent ages (9, 12, 18, 24, 36, 100 and 168 h)—were placed
into the water. The time for a compression test was calcu-
lated at a certain teq by referring to the concrete temperature
measured from the embedded thermocouple. Figure 2b
presents the relationships between teq and real elapsed time
(t) at strength measurement for each curing regime with a

Table 2 Mix proportions.

f
0
cd (MPa) W/C Slump (mm) S

SþG Weight per unit volume (kg/m3) SP/C

Water (W) Cement (C) Sand (S) Gravel (G)

30 0.5 200 0.39 177 354 668 1053 0.01

40 0.41 200 0.37 177 433 606 1040 0.01

50 0.35 200 0.36 177 506 570 1022 0.01

Fig. 1 Curing scheme of HESC in a water bath.

Fig. 2 Curing regimes with 5 different Tmax: a typical curing
regime; b Equivalent age (teq) versus real elapsed time
(t) at measurement for different Tmax.
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specific Tmax. After the concrete reached the maximum
temperature, the temperature was held constant until teq of
36 h, at which time the HESC was expected to reach 70 %
of its f

0
cd value. The temperature of the concrete was then

reduced to 20 �C at a rate of -10 �C/h and maintained at
20 �C until performing the additional compression tests at
the teq of 100 and 168 h.

2.3 Development of Concrete Compressive
Strength
A set of two replica cylinders were removed from the

water bath at the predetermined teq and stripped from their
molds. The both top and bottom surfaces were ground
shortly before they were tested in compression with a
hydraulic servo-controlled compressive testing machine of
1000 kN capacity. The rate of loading was within the range
of 0.25 ± 0.05 MPa/s (ASTM C39/C39M-14, 2014).
Table 3 tabulates the test results. Experimentally observed

compressive strengths in Table 3, measured for different f
0
cd

and Tmax, show that a majority of HESCs reached 70 % or
more of their f

0
cd values in 36 and 168 h in equivalent age,

respectively. Figure 3 illustrates a trend of compressive
strength development of HESC with different f

0
cd for the

same Tmax. HESC with higher strength develops its com-
pressive strength more rapidly at an early stage of curing
than that with lower strength under the same Tmax. At the
later stage of curing, however, all concrete with different f

0
cd

values showed similar rates of strength increase. In general,
concrete cured under higher Tmax showed a more rapid
increase in strength development in the early stage of curing,

but its rate decreased more rapidly at the later stage of the
curing period.
Figure 4 shows the effects of Tmax on the development of

compressive strength in HESC with different Tmax = 20, 40
and 60 �C for the same f

0
cd value. For all cases, the rapid

development of compressive strength was observed in the
early stage of the curing period. The developing compressive
strength, then, asymptotically approaches to the ultimate
strength at the decreasing rate. Similar observations were
also reported for concrete made of Type I cement.
When cured at a higher Tmax, the compressive strength of

HESC tended to develop at a higher rate in the early stage
of curing. However, the rate of strength increase decreased
more rapidly for the specimens cured under higher tem-
peratures, resulting in an asymptotic approach of strength
to a relatively lower limiting compressive strength with the
increase in time compared with those cured under lower
temperatures. This clearly shows that the curing tempera-
ture has a significant effect on the rate of hydration for
HESC and leads to a crossover effect, commonly reported
for the concrete with Type I cement. Crossover effect was
caused by complex mechanisms involving stiffer and
thicker build-up of hydrate shells, low permeability
hydration products around the cement grains, retarded
diffusion of the hydrate in the secondary reaction of cement
hydration, non-uniform dispersion of reaction products
within the pores of the hardening paste at higher temper-
ature (Alexander and Taplin 1962; Carino and Lew 1983;
Kjellsen et al. 1990; Kjellsen and Detwiler 1993; McIntosh
1956; Yi et al. 2005).

Table 3 Measured concrete strengths (S in MPa) at different values of Tmax and teq.

Specimens f
0
cd

(MPa)
Tmax
(�C)

Equivalent ages, teq (h)

No. Name 9 12 18 24 36 100 168

1 HCL20 30 20 0.2 0.3 0.6 0.6 7.0 8.4 16.1 14.2 21.5 22.1 35.4 29.2 34.7 34.5

2 HCL30 30 30 0.1 0.1 1.3 1.0 7.0 6.8 15.6 15.6 21.5 22.9 32.6 36 33.1 33.4

3 HCL40 30 40 1.5 1.5 3.8 4.3 10.7 10.8 16.6 16.3 20.0 20.2 28.1 30.5 32.8 33.6

4 HCL50 30 50 1.0 0.0 0.5 0.7 8.4 6.3 12.6 13.6 20.3 18.8 32.3 32.6 33.9 33.2

5 HCL60 30 60 0.4 0.4 1.9 2.8 10.1 9.9 15.8 15.9 20.1 20.8 29.1 30.9 32.6 32.8

6 HCM20 40 20 0.4 0.4 3.9 4.3 23.1 23.5 27.6 29.0 34.5 35.8 41.7 43.0 45.5 43.9

7 HCM30 40 30 1.6 1.7 7.8 7.5 20.1 17.5 21.8 24.5 28.1 31.2 39.1 38.6 43.8 42.2

8 HCM40 40 40 2.0 2.3 8.9 9.7 19.2 20.7 23.7 25.0 29.0 30.0 38.0 39.8 41.8 42.5

9 HCM50 40 50 1.1 1.1 6.4 6.3 17.6 18.0 23.1 25.8 25.9 26.2 41.6 39.1 42.8 42.9

10 HCM60 40 60 1.2 1.1 6.5 8.2 18.1 17.8 23.9 26.3 29.0 32.5 42.8 42.6 43.8 43.7

11 HCH20 50 20 0.9 1.0 9.8 10.8 28.2 27.8 34.3 33.9 39.3 39.8 50.5 53.3 56.7 57.0

12 HCH30 50 30 0.3 1.0 4.4 3.6 25.2 24.5 31.0 32.3 41.7 40.7 49.1 46.3 54.3 53.9

13 HCH40 50 40 0.2 0.4 1.3 1.4 21.5 21.4 28.0 30.0 37.0 37.5 47.2 47.2 51.5 53.8

14 HCH50 50 50 0.2 0.5 2.7 2.9 17.4 16.3 29.8 30.9 34.1 34.3 46.7 45.0 51.5 50.0

15 HCH60 50 60 0.5 0.4 3.3 3.1 16.1 20.1 27.2 28.5 34.1 34.2 41.0 42.0 50.8 51.3
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3. Prediction of ESC Compressive Strength

3.1 Previous Models: Review
A mathematical model for the rate of relative increase in

concrete compressive strength with respect to its limiting
compressive strength (Su in MPa) was suggested by Bern-
hardt (1956) as given in Eq. (2). In Eq. (2), the reaction
coefficient (r) reflects the retardation of continuous hydra-
tion as curing time elapses, and its value is taken as greater
than zero. Equation (2) assumes that the rate of relative
strength increase with respect to Su decreases from its rate
constant (k) to zero as the strength (S) approaches to Su with
the increase in elapsed curing time.

d S
Su

� �
dt

¼ k � 1� S

Su

� 	r

ð2Þ

where, k is the rate constant of concrete (h-1) and r is the
reaction coefficient.
In Eq. (2), the rate constant, k, was adopted from the

Arrhenius equation (Arrhenius 1889) for concrete. The k
represents the number of collisions per unit time during the
hydration reaction and is expressed as:

k ¼ A � e�E= R� Tcþ273ð Þ½ � ð3Þ

Fig. 3 Effect of f
0
cd on concrete strength development (open square 30 MPa; diamond 40 MPa; and open triangle 50 MPa): a

f
0
cd = 30 MPa; b f

0
cd = 40 MPa; c f

0
cd = 50 MPa.
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where, A is the frequency factor (h-1) and E is the activation
energy in general (J/mol).
By integrating Eq. (2) with respect to time t and applying

initial condition of S(0) = 0, two expressions for S corre-
sponding to r = 1 or 2 can be obtained as given in Eq. (4):

S ¼
Su � 1� e�kt

� �
if r ¼ 1

Su � 1� 1
1þ r�1ð Þ�k�t½ � 1= r�1ð Þ½ �

n o
if r 6¼ 1

(
ð4Þ

Depending on the type of concrete, curing conditions or
experimental parameters in consideration, different sugges-
tions and modifications of Eq. (4) were suggested by dif-
ferent researchers (Carino and Tank 1992; Kim et al. 1998,
2001; Kwon et al. 2014; Yi et al. 2005). Bernhardt

(1956) and Carino (1984) suggested r = 2 after empirically
investigating the development of strength in ordinary con-
crete exposed to different curing temperatures. Moon (1999)
and Yi et al. (2005) suggested that a reaction coefficient
r equal to 3 would estimate later-age strength development
more accurately than that equal to 2.
Based on the basic equation with r = 2, the rate constant

model given in Eq. (5) was proposed by Tank and Carino
(1991) to estimate the relative strength gain of concrete
based upon its teq.

S ¼ Su �
kr � teq � t0r
� �

1þ kr � teq � t0r
� � ð5Þ

Fig. 4 Effect of Tmax on concrete strength development (diamond 20 �C; open triangle 40 �C; and open circle 60 �C): a Tmax ¼ 20 	C;
b Tmax ¼ 40 	C; c Tmax ¼ 60 	C.
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where, kr is the rate constant at reference temperature, Tr

(h-1) (¼ A � e�E= R� Trþ273ð Þ½ �) and t0r is the age at the start of
strength development at the reference temperature (h).
In their work, quantitative information about the effect of

temperature on the rate constant was obtained by curing
specimens at various constant temperatures and through
systematic analysis of the resulting strength gain data. Not
only r, but also Su as well as E and A in Eq. (3) have been
functionalized with some influential factors after experi-
mental observations. Tank and Carino (1991) showed that Su
is a function of curing temperature, supposing that the Su
decreases nearly linearly with curing temperature. Whereas
Yi et al. (2005) observed that Su depends mainly on curing
temperature, Kwon et al. (2014) and Liao et al. (2008)
suggested Su as a function of temperature and humidity after
their experimental observations. ‘‘Activation energy has been
proposed as a function of temperature Tc by Freiesleben and
Pedersen (1977) and Jonasson et al. (1995), Tc and t by Kim
et al. (2001), the chemical components of the cementitious
materials and Blaine value by Schindler (2004) and Poole
(2006), the water–cement ratio (W/C), Tc, and degree of
hydration by Abdel-Jawad (2006), and Tc and concrete age
by Yang et al. (2016). Frequency factor was suggested as a
function of both Tc and humidity by Liao et al. (2008) and a
function of humidity only by Kwon et al. (2014).’’

3.2 Development of the Model
In this study, the generalized model for the prediction of

strength development of HESC was developed based on
Tank and Carino’s model in Eq. (5). Firstly, a series of
regression analyses were performed for each set of 70 test
data obtained for each f

0
cd (=30, 40 or 50 MPa) cured under

one of the 5 different curing regimes with Tmax of 20, 30, 40,
50 and 60 �C. From the regression analyses, the best-fitting
values of Su, kr and t0r in Eq. (5) were identified for each
data set. Case I in Table 4 tabulates the best-fitting values as
well as the average (l) and standard deviation (r) of the
ratios of predicted strengths (Sthy) to experimentally
observed ones (Sexp) for teq [ t0r. It is interesting to observe
that although the values of Su and kr show their dependency
on f

0
cd , the values of t0r do not show their dependency on f

0
cd .

The maximum difference in t0r was about 5.0 % at maxi-
mum with respect to their average value of 9.3 h
(0.39 days). However, the statistical parameters, Su and kr
shown in Case I in Table 4, suggest the need for more
refinement via influential factors.
Figure 5 shows comparisons between the model predic-

tions and test results on the development of compressive
strength of HESC with respect to teq for Case I. In general,
the predicted values showed the general trend of strength
development as a function. However, they tended to over-
estimate compressive strength development in the curing
stage before teq less than 18 h with predicted strengths 1.64
times greater than the measured ones on average (Fig. 6).
Previous experimental studies showed that Su, E and A

were influenced by various factors, such as Tc, W=C; t,
humidity, chemical components and Blaine. However,

relative humidity, chemical components and Blaine value
were kept invariant during the test in this study. Conse-
quently, these factors were excluded in this study when a
general model was developed based on Eq. (5). A total of 15
separate regression analyses were performed for 5 different
curing schemes applied to 3 different f

0
cd values in order to

determine the best-fitting coefficients for t0r and Su in Eq. (5)
and A and E in Eq. (3), with Tc ¼ Trð¼ 20 	C) as given in
Eq. (6). A constant value of R ¼ 8:314 J=mol=K was used
throughout. Case II in Table 4 tabulates the best-fitting
values from 15 separate regression analyses.

kr ¼ A � e�E= R� Trþ273ð Þ½ � ð6Þ

3.2.1 Frequency Factor, A
Regression analyses revealed that the maximum and

minimum values of A were 1:005� 105 h�1 for HCL50 and
1:010� 105 h�1 for HCH20, respectively, as shown in Case
II in Table 4 (Fig. 7a). The ratio of the maximum value of A
to the minimum one was only 1.01, which would suggest
that the effects of concrete strength and maximum temper-
ature on A are marginal. From this observation, the value of
A was determined to be constant at 1:0� 105 h�1.

3.2.2 Age at the Start of Strength Development
at Tr, t0r
As observed in Case I in Table 4, values of t0r from Case

II in Table 4 remained between 8.2 and 10.2 h and did not
show any clear dependency on either f

0
cd or Tmax (Fig. 7b).

This observation corresponds to the finding of Kim et al.
(2001) that t0r does not depend on concrete strength. Using a
constant value of A ¼ 1:0� 105 h�1 and assuming a con-
stant value of t0r independent of f

0
cd and Tmax, the best-fitting

value of t0r was found to be 9.02 h from regression analysis
performed on 210 test data. From this observation, the
constant values of 1:0� 105 h�1 and 9.02 h (0.38 days)
were assigned to A in Eq. (6) and t0r in Eq. (5), respectively,
in order to determine the factors that influence the remaining
parameters in subsequent analyses.

3.2.3 Limiting Compressive Strength, Su
Figure 8 shows the results of a regression analysis that

obtained the ratios of the best-fitting value of Su at Tmax to
that of Su at Tr (Sur) for 15 different cases with 3 different f

0
cd

and 5 different Tmax values. Figure 8 clearly demonstrates
the crossover effect, that is, a decrease in Su with an increase
in Tmax, for all concrete strengths. Figure 8 also shows that,
in general, Su/Sur is influenced by f

0
cd at a given Tmax. Test

results showed that concrete strength obtained from different
mix proportions resulted in different Sur. Based on the test
results, Sur is expressed as a linear function of f

0
cd in this

study. To reflect the dependency of Su/Sur on Tmax and f
0
cd ,

the following regression equation is suggested to evaluate Su
in Eq. (5):

Su ¼ Sur � �0:0032 � Tmax þ as � f 0
cd þ bs

� �h i
ð7Þ
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where, Sur ¼ 0:95f
0
cd þ 16:0, as ¼ �0:0005 and

bs ¼ 1:0684.
Equation (7) is in accordance with previous models: Su as

a function of Tmax by Tank and Carino (1991); f
0
cd and Tmax

by Yi et al. (2005); and Tmax by Kwon et al. (2014) and Liao
et al. (2008) if the relative humidity remains constant. Their
models showed similar effects of Tmax and f

0
cd on S as

experimentally observed in this study.

3.2.4 Activation Energy, E
Figure 9a exhibits that except for the cases when Tmax

changed from 20 to 40 �C for f
0
cd = 50 MPa, E decreases in

general with increasing Tmax. Kim et al. (2001) and Jonasson
et al. (1995) also observed that E decreased with increasing
Tmax. Figure 9a also shows that in general E decreases with
an increase in f

0
cd at a specific Tmax. Those experimental

results are also in accordance with previous observations

Fig. 5 Predictions of compressive strength development at different teq by Eq. (5): Case I in Table 4 (open square 30 MPa; diamond
40 MPa; and open triangle 50 MPa).
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made by Kim et al. (2001), Kwon et al. (2014) and Abdel-
Jawad (2006). Figure 9b illustrates that higher E was
observed in general with lower Tmax at a given value of W/C.
This observation also agrees with the finding reported by
Abdel-Jawad (2006). Based on the experimental observa-
tions, the following expression is suggested for E of HESC
as a function of both Tmax and W/C:

E Tmax; f
0
cd

� �
¼ ae � Tmax þ be �W=C þ ce �Emax ð8Þ

where, ae = -47.2 9 W/C ? 9.3, be = 10,541 and
ce = 31,308.
Equation (5) was modified by substituting E in Eq. (8)

into Eq. (6) and Su in Eq. (7) into Su in Eq. (5). Figure 10a
shows a comparison between the predictions made by the
modified model and the 210 experimental results (Case III
in Table 3). The l and r of the ratios of the model pre-
dictions to experimental results were 1.30 and 1.16,
respectively.

Fig. 6 Comparisons with 210 experimental results: Case I in Table 4.

Fig. 7 Effects of Tmax on A and t0r: Case II in Table 4 (open square 30 MPa; diamond 40 MPa; and open triangle 50 MPa): a Tmax
versus A; b Tmax versus t0r.
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The predictions made by the modified model were shown
to have a relatively large value of l with a significant scatter
by a large value of r (=1.16). This was mainly due to
overestimations on the compressive strengths of HESC at
early equivalent ages less than or equal to 18 h as indicated
in Fig. 10b for f

0
cd equal to 30 MPa. The same trends of

overestimation were also observed from the models devel-
oped for Case I. For f

0
cd equal to 40 and 50, similar

overestimations were also observed, especially for the teq
less than or equal to 18 h. In order to improve model pre-
dictions at early age, a modification function for early age
was introduced in Eq. (9) through regression analyses of the
210 test data. The function (b) is composed of a product of
linearly decreasing and exponentially decaying functions
with respect to the increase in teq.

b ¼ Sexp � Sthy
Sexp

¼ 1� ar � 24 � teq � t0r
� �� �� e�24br � teq�t0rð Þ ð9Þ

where, ar ¼ ab1Tmax þ bb1 and br ¼ ab2Tmax þ bb2.
In Eq. (9), ab1 and bb1 have different fitting values of 0.37,

and 0.006 for f
0
cd = 30 MPa, 0.0002 and 0.0001 for

f
0
cd = 40 MPa, and 0.28 and 0 for f

0
cd = 50 MPa, respec-

tively. The coefficients of ab2 and bb2 also have different
values of 0.016 and 0.21 for f

0
cd = 30 MPa, 0.15 and 0.006

for f
0
cd = 40 MPa, and 0.005 and 0.62 for f

0
cd = 50 MPa,

respectively. Including a corrective function b in Eq. (9), the
generalized predictive equation is presented in Eq. (10) for
the development of compressive strength of HESC. In
Eq. (10), A, R and t0r take constant values of 1:0� 105hrs�1;

8.314 J/mol/K and 9.02 h, respectively. The expressions for
Su from Eq. (7) and E from Eq. (8) were used in Eq. (10).

Fig. 8 Effects of Tmax and f
0
cd on Su/Sur with A ¼ 1:0� 105 h�1

and t0r ¼ 9:02 h (open square: 30 MPa; diamond
40 MPa; and open triangle 50 MPa).

Fig. 9 Effects of Tmax andW=C on E with A ¼ 1:0� 105 h�1 and t0r ¼ 9:02 h: a Tmax versus E (open square 30 MPa; diamond 40 MPa;
and open triangle 50 MPa); b W=C versus E (diamond 20 �C; open square 30 �C; open triangle 40 �C; times 50 �C; and open
circle 60 �C).
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Fig. 10 Comparisons of predicted compressive strengths and experimental measured ones: Case III in Table 3: a Comparisons
with 210 experimental results; b Overestimation by the modified model in early age (f

0
cd = 30 MPa) (diamond: 20 �C; open

triangle 40 �C; and open circle 60 �C).

Fig. 11 Comparisons of predicted compressive strengths and experimentally measured ones: Case IV in Table 4: a Comparison
with 210 experimental results; b Predictions of compressive strength by Eq. (10) in early age (f

0
cd = 30 MPa) (diamond

20 �C; open triangle 40 �C; and open circle 60 �C).
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S ¼ Su � 1

1� b
� A � e� E

R� Trþ273ð Þ½ � � teq � t0r
� �

1:0þ A � e� E
R� Trþ273ð Þ½ � � teq � t0r

� � ð10Þ

Statistical parameters resulting from the predictions by
Eq. (10) are listed in Case IV in Table 3. The l and r for the
ratios of predicted values to experimentally observed values
were 0.97 and 0.22, respectively. Comparisons between the
predictions made by Eq. (10) and 210 test results are shown
in Fig. 11a. In Fig. 11b, model predictions for 18 test results
for teq less than or equal to 18 h are presented. Compared
with Figs. 10a and 10b, Figs. 11a, and 11b show improved
predictions made by (Eq. 10), especially for data values
before 18 h in teq. The developed model was able to predict

the test results with reasonable accuracy for all values of teq.
Figure 12 illustrates comparisons between model predictions
and 210 test results for different f

0
cd . The model could predict

strength development of HESC for all f
0
cd and Tmax values in

a reasonable accuracy. The developed model can be used to
find the optimum steam curing regime applied to HESC in
future studies.

4. Conclusions

Application of HESC to steam-cured fabrication of precast
prestressed units could reduce fuel consumption and carbon

Fig. 12 Predictions by Eq. (10) for different f
0
cd : Case IV in Table 4 (diamond 20 �C; open triangle 40 �C; and open circle 60 �C): a

f
0
cd = 30 MPa; b f

0
cd = 40 MPa; c f

0
cd = 50 MPa.
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dioxide emissions due to its early-strength-development. In
order to maximize the beneficial effect of HESCS in steam
curing process, it seems necessary to have a priori knowl-
edge on the effects of curing temperature, age and other
factors on the development of compressive strength in
HESC. From experimental investigations, the following
conclusions were made in this study.

1. HESC showed a general trend in strength development
similar to that observed for normal concrete with Type I
cement: a rapid increase during the early stage of curing
followed by a gradual decrease in the rate in the later
stage, with an asymptotic approach to the limiting
compressive strength in the final stage.

2. Crossover effects were observed. Strength increased
more rapidly at higher Tmax in the early stage of curing
but its rate reduced more rapidly in the later stage. This
resulted in an asymptotic approach of strength to a
relatively lower limiting compressive strength than that
obtained under a lower Tmax.

3. A majority of HESCs, regardless of differences in f
0
cd

and Tmax, reached about 70 and 100 % of their design
compressive strengths in 36 and 168 h in equivalent
age, respectively.

4. Separate regression analyses on 3 sets of 70 data for
each f

0
cd exhibited that values of t0r are independent of

f
0
cd or Tmax and remain almost constant. However, values
of Su and kr showed that they needed to be function-
alized with influential factors.

5. From additional separate regression analyses performed
for 15 sets of data, the values of A and t0r were
identified. Using these values, Su and E were function-
alized as a decreasing function with decreasing f

0
cd and

increasing Tmax, and a decreasing function with increas-
ing Tmax and decreasing W/C, respectively.

6. A generalized model was presented after introducing a
corrective function to better predict the strength devel-
opment of HESC at an equivalent age of less than 18 h.
The l and r for the ratios of predicted values by the
generalized model to 210 experimentally measured data
were 0.97 and 0.22, respectively.
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Arrhenius, S. (1889). Über die reaktionsgeschwindigkeitbei der

inversion von rohrzuckerdurchsauren. Zeitschrift für

Physikalische Chemie, 4, 226–248.

ASTM C1074-04. (2004) Standard Practice for Estimating

Concrete Strength by the Maturity Method, West Con-

shohocken, PA.

ASTMC143/C143M-10. (2010). Standard test method for slump

of hydraulic-cement concrete. West Conshohocken, PA.

ASTM C231/231M-14 (2014). Standard test method for air

content of freshly mixed concrete by the pressure method,

West Conshohocken, PA.

ASTM C39/C39M-14. (2014). Standard test method for com-

pressive strength of cylindrical concrete specimens, West

Conshohocken, PA.

Bernhardt, C. J. (1956). Hardening of concrete at different

temperatures. RILEM Symposium on Winter Concreting,

Copenhagen, Danish, Institute for Building Research,

Session B-II.

Carino, N. J. (1984). Maturity method: Theory and application.

Journal of Cement Concrete and Aggregates, 6(2), 61–73.

Carino, N. J., & Lew, H. S. (1983). Temperature effects on the

strength-maturity relations of mortars. ACI Journal, 80(3),

177–182.

Carino, N. J., & Tank, R. C. (1992). Maturity functions for

concretes made with various cements and admixtures. ACI

Materials Journal, 89(2), 188–196.

CSA (Canadian Standards Association). (2014). Precast con-

crete—materials and construction. CSA-A23.4-09, Tor-

onto, Canada.

Erdem, T. K., Turanli, L., & Erdogan, T. Y. (2003). Setting time:

an important criterion to determine the length of the delay

period before steam curing of concrete. Cement and Con-

crete Research, 33(5), 741–745.
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