Incidence of Active HCV infection amongst Blood Donors of Mardan District, Pakistan

Fawad Karim¹, Abu Nasar¹, Ibrar Alam¹, Iftikhar Alam², Said Hassan³*, Rahmat Gul², Sana Ullah⁴, Muhammad Rizwan³⁵

Abstract

Hepatitis C is an ailment of liver caused by hepatitis C virus (HCV) infection. About 3% of the world population is infected by this virus. HCV infection is a leading reason for liver cirrhosis and therefore a major source of hepatocellular carcinoma. The study focused on the incidence of active HCV infection in blood donors of Mardan district of KPK, Pakistan. A total of 5318 blood donors were inspected for the presence of anti-HCV antibodies and HCV-RNA using ICT (immune-chromatographic test), ELISA and RT-PCR at Mardan Medical Complex (MMC), Mardan. Out of these, 157 (2.95%) were positive by ICT, 60 (1.12%) by ELISA and 56 (1.05%) for HCV-RNA. The frequency of active HCV infectivity amongst the blood donors from district Mardan, KPK Pakistan was 1.05 %. Application of strict measures during blood donor selection and use of proper screening assays such as ELISA in place of ICT devices can give a more accurate picture so that the incidence of this viral infection in HCV negative blood recipients can be reduced.

Keywords: HCV - ELISA - RT-PCR - viral infection rates

Introduction

The main reason of hepatitis C is hepatitis C virus (HCV) which was first acknowledged in 1989 (Alam et al., 2013). The infection by hepatitis C virus is the main cause of prolonged hepatitis leading to cirrhosis of liver followed by carcinoma of hepatic cells. HCV contributes to about 27% of cirrhosis and 25% hepatocellular carcinoma (HCC) (Alter et al., 2007). It is an enclosed virus and is a species of family Flaviviridae. The genetic analysis of HCV virus revealed that it is a virus enclosing positive sense single stranded RNA genome. The RNA molecule is 9600 nucleotide bases long.

HCV has a remarkable diversity in its genome. Until now about 30 genotypes of HCV have been reported worldwide (Kato et al., 2000). The incubation period of HCV virus for creating an acute hepatitis C infection in a host ranges from 2-12 weeks. Symptoms are informed in only 10-15% patients (Ozaras et al., 2009). Among the infected people, about 70% patients fail to remove the virus during acute stage which leads to chronic hepatitis. Maximum people who have acute hepatitis C presented no symptoms for it and do not know if they are infected. HCV can lead to chronic liver disease which is contributing to 8000-10000 deaths per year (Moyer et al., 1999). Among the total world population, about 3% is tagged HCV infected by World Health Organization (WHO) (WHO: Diseases; Hepatitis C). HCV diagnosis generally depends on the recognition of anti-HCV antibody in blood by an Enzyme Immuno Essay (EIA). During initial symptoms of disease the antibodies are not well generated in about 30% of patients, so the sighting of HCV depend on detection of HCV RNA which can be spotted within 7-14 days after infection with subsequent high eminent alanine aminotransferase values (Ozaras et al., 2009).

According to most of studies the viral load and the genotype of virus have no effect on the severity of disease and its progression it also does not predict the natural history. During infection by HCV, the infected individual’s immune system develop antibodies against core (C) protein and several non-structure proteins of the virus. CD8+ cytotoxic T-cells are developed in the liver and CD4+ helper T-cells are found in the outlying blood of chronically infected individuals (WHO: Diseases; Hepatitis C). Prevalence of HCV in different countries ranges from 0.3% in Australia, 8.5% in England and Germany, Egypt has highest prevalence having more than 6 million positive people and Brazil having about 2 million seropositive subjects (Bruggmann et al., 2014). In Pakistan the prevalence of HCV is 4.7% with genotype 3a being dominant (Afridi et al., 2015). In KPK province of Pakistan the incidence rates of HCV in diverse groups of people ranges from 3.59% in thalassemia patients, 4.19% in dialysis patients, 1.19% in major surgery patients, 1.05% in minor surgery patients, 0.98% in intravenous injection and 0.89% in transfusions.

¹Department of Biotechnology, ²Department of Human Nutrition and Dietetics (HND), Bacha Khan University Charsadda, ³Center of Biotechnology and Microbiology, University of Peshawar, KP, ⁴Department of Animal Science Quaid-i-Azam University Islamabad, ⁵Department of Microbiology, Abasyn University Peshawar, KPK-Pakistan *For correspondence: saidhassan15@yahoo.com

Asian Pac J Cancer Prev, 17 (1), 235-238
2.99% in patients having dental procedures and 3.59% in injecting drug users (IDU) (Ali et al., 2011). Alcohol intake, presence of HBV already HBV/HCV co-infection are the factors which promote disease progression. The spread of HCV mainly happens by contact to the contaminated blood as well as plasma products. The transmission is less reported by household and sexual activities (WHO: Diseases; Hepatitis C). Further threat elements for anti HCV positive test include transfusion of blood from infected person, illegal injection drug use intravenously, parenteral exposure such as tattooing and acupuncture, non-sterile and non-disposable equipment in dental procedure, occupational exposure to HCV, sexual intercourse with an injecting drug user or HCV positive individual (high risk sexual behavior) (Ajaccio et al., 2002). In developing countries like Pakistan, HCV is mainly transmitted through blood transfusion the reason could be the lack of resources, un-well trained staff, feeble infrastructure and ineffectual screening of blood donors for HCV infection (Akhtar et al., 2004). During this study our efforts were to unveil the prevalence of HCV by investigating antibodies against HCV and HCV-RNA in healthy blood donors. The purpose of our study was finding out the occurrence of HCV antibodies in the blood and to find out the incidence of actual HCV infection in the blood donors, resident in Mardan, KPK, Pakistan and also to compare the performance of screening technique for finding HCV antibodies.

Materials and Methods

Site of study and collection of samples

Blood samples were collected from District Head Quarters hospital and Mardan Medical Complex Mardan, KPK Pakistan. The serological tests were performed at screening lab and PCR lab of Mardan Medical Complex Mardan. All the blood donors were resident of Mardan. Those blood donors were studied who came for blood donation during the period of March 2015 to July 2015. These blood donors were declared fit for donation by the medical staff of the blood bank. 5 milliliters of blood were taken from the blood donor with sterile syringe. Syringe was emptied in an EDTA specimen tube and centrifuged for 5 minutes at 2500 revolution per minute (rpm). Plasma was separated from the tube and was ready for further analysis. These samples were then checked by three types of screening techniques in order to find out HCV antibodies and HCV RNA, moreover to evaluate the efficacy of the screening technique such as ICT and ELISA for screening of HCV in patient.

Immuno-chromatographic test ICT

Serum or plasma collected was checked for the occurrence of anti-HCV antibodies using ICT applying manufacturer’s protocol. Immune-chromatographic strips used in this purpose were supplied from two makers first was Accurate and second Acon (Acon, USA).

Enzyme-linked immunosorbent assay (ELISA)

Samples confirmed positive by ICT were further analyzed by another assay named ELISA to generate more accurate result. The ICT positive sera were checked using ELISA (S.A, Barcelona Spain) followed the protocol provided by the manufacturer as followed by (Akhtar et al. 2015). Those samples which were confirmed positive by ELISA were then treated for extraction of RNA.

Nucleic acid isolation and polymerase chain reaction

Positive ELISA samples were sent to PCR laboratory where RNA was extracted from them using the RNA extraction kit made by Sacace (Sacace, Italy) followed by RT-PCR. The kit used for RT-PCR was manufactured by Sacace biotechnologies (Sacace, Italy) Cepheid smart cycler was used for the Real-Time PCR following the guidelines given with the Cepheid smart cycler (Cepheid, California, U.S).

Results

HCV incidence amongst young blood donor of District Mardan KPK

Total 5318 voluntary blood donors were tested. ICT

Table 1. Enzyme Immuno Essays, RT-PCR Result and their Percentage

<table>
<thead>
<tr>
<th>MONTHS</th>
<th>No. of ICT (+ive)</th>
<th>ELISA (+ive)</th>
<th>RT-PCR (+ive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>1390</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>April</td>
<td>1170</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>May</td>
<td>1134</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>June</td>
<td>792</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>July</td>
<td>832</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>5318</td>
<td>157(2.95%)</td>
<td>60(1.12%)</td>
</tr>
</tbody>
</table>

Figure 1. No of Positive Subjects Screened Through ICT, ELISA and PCR
Incidence of Active HCV Infection amongst Blood Donors of Mardan District, Pakistan


Incidence of Active HCV Infection amongst Blood Donors of Mardan District, Pakistan


