DOI QR코드

DOI QR Code

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis

유한요소해석을 통한 해중터널의 유체동역학 해석

  • Received : 2016.01.28
  • Accepted : 2016.06.19
  • Published : 2016.12.01

Abstract

As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

대륙 및 섬을 연결하는 교통 시설로써 지금까지 해상에 놓이는 교량과 해저 지반에 건설되는 해저 터널 그리고 내륙에서 건설하여 해저지반 위에 안착시킨 침매 터널이 사용되어 왔다. 해중 터널 구조물은 계류선을 이용하여 터널 본체를 특정 깊이 내로 잠수시킨 시설로써 아직 실제 건설 사례는 없지만, 해저 터널에 비해 건설 기간이 짧고 비용이 적게 든다는 장점이 있다. 해중 터널 본체 및 계류선의 합리적인 설계를 위해서는 무엇보다도 해중 터널 구조물의 합리적인 구조 해석이 선행되어야 한다. 일반적인 육상 교통 시설물과 달리 해중 터널은 변동성이 큰 환경 하중에 큰 영향을 받을 뿐 만 아니라 물 안에 잠수식으로 떠있다는 구조적인 특징이 있어서 그 해석이 까다로울 수 있다. 본 연구는 해중 터널 시스템의 합리적인 전체계 동적 구조 해석 기법의 제안을 목표로 한다. 이를 위하여 일반적인 구조물 해석에 널리 쓰이는 ABAQUS를 이용하여 KIOST (2013)에서 연구한 터널 모델을 각 환경 조건에 대한 동적 거동을 분석하였고, 이를 실험 결과와 비교하여 해석 기법의 타당성을 분석하였다. 또한 이 연구에서는 계류선의 배치형식, 터널의 흘수가 해중 터널 동적 거동에 미치는 영향을 분석하였고, 불규칙 파랑에 대한 특성 역시 분석하였다.

Keywords

References

  1. Cifuentes, S., Kim, S., Kim, M. H. and Park, W. S. (2015). "Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves." Ocean Systems Engineering, Vol. 5, No. 2, pp. 109-123. https://doi.org/10.12989/ose.2015.5.2.109
  2. Dong, M., Miao, G. Yong, L., NIU, Z., Pang, H. and Hou, C. (2012). "Effect of escape device for Submerged Floating Tunnel (SFT) on hydrodynamic loads applied to SFT." Journal of Hydrodynamics, Ser. B., Vol. 24, No. 4, pp. 609-616. https://doi.org/10.1016/S1001-6058(11)60284-9
  3. Faltinsen, O. M. (1993). Sea loads on ships and offshore structures, Cambridge university press, Cambridge, UK.
  4. Garrett, D. L. (1981). "Dynamic analysis of slender rods." Journal of Energy Resources Technology, Vol. 104, No. 4, pp. 302-306. https://doi.org/10.1115/1.3230419
  5. Hong, Y. and Ge, F. (2010). "Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load." Procedia Engineering, First International Symposium on Archimedes Bridge (ISAB-2010) Vol. 4, pp. 35-50.
  6. Jakobsen, B. (2010). "Design of the submerged floating tunnel operating under various conditions." Procedia Eng., First International Symposium on Archimedes Bridge (ISAB-2010), Vol. 4, pp. 71-79, 2010.
  7. Kunisu, H. (2010). "Evaluation of wave force acting on submerged floating tunnels." Procedia Engineering, First International Symposium on Archimedes Bridge (ISAB-2010), Vol. 4, pp. 99-105.
  8. Kunisu, H., Mizuno, S., Mizuno, Y. and Saeki, H. (1994). "Study on submerged floating tunnel characteristics under the wave condition." Proceedings of the Fourth International Offshore and Polar Engineering Conference, ISOPE-I-94-096.
  9. Lu, W., Ge, F., Wang, L., Wu, X. and Hong, Y. (2011). "On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions." Marerial Structures, Vol. 24, No. 4, pp. 358-376. https://doi.org/10.1016/j.marstruc.2011.05.003
  10. Oh, S. H., Park, W. S., Jang, S. C. and Kim, D. H. (2013). "Investigation on the behavioral and hydrodynamic characteristics of submerged floating tunnel based on regular wave experiments." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1887-1895. https://doi.org/10.12652/Ksce.2013.33.5.1887
  11. Orcina, Orcaflex User Manual V10.0a.
  12. Pilato, M. D., Perotti, F. and Fogazzi, P. (2008). "3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation." Engineering Structures, Vol. 30, No. 1, pp. 268-281. https://doi.org/10.1016/j.engstruct.2007.04.001
  13. Remseth, S., Leira, B. J., Okstad, K. M. and Mathisen, K. M. (1999). "Dynamic response and fluid / structure interaction of submerged floating tunnels." Computures and Structures, Vol. 72, pp. 659-685. https://doi.org/10.1016/S0045-7949(98)00329-0
  14. Simulia Inc., ABAQUS User Manual V6.12.
  15. Ostlid, H. (2010). "When is SFT competitive?, Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load." Procedia Engineering, First International Symposium on Archimedes Bridge (ISAB-2010), Vol. 4, pp. 3-11.

Cited by

  1. Global Static Performance Analysis of the Cable-Stayed Bridges with Floating Tower according to Tendon Arrangement vol.30, pp.4, 2018, https://doi.org/10.7781/kjoss.2018.30.4.193
  2. Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0102-2
  3. Hydrodynamic Analysis of Submerged Floating Pipeline under Regular Wave vol.30, pp.6, 2018, https://doi.org/10.7781/kjoss.2018.30.6.335