DOI QR코드

DOI QR Code

Pilot-scale production of Omija-cheong by low temperature incubation: An assessment of quality characteristics

저온숙성 방법에 따른 생오미자 당절임 농축액인 오미자청의 파일럿 규모 생산 및 품질특성

  • Park, Mi-Na (Department of Food Science and Biotechnology, Wonkwang University) ;
  • Ko, Eun-Seong (Department of Food Science and Biotechnology, Wonkwang University) ;
  • Lee, Chang Joo (Department of Food Science and Biotechnology, Wonkwang University) ;
  • Choi, Joon-Ho (Department of Food Science and Biotechnology, Wonkwang University)
  • 박미나 (원광대학교 식품생명공학과) ;
  • 고은성 (원광대학교 식품생명공학과) ;
  • 이창주 (원광대학교 식품생명공학과) ;
  • 최준호 (원광대학교 식품생명공학과)
  • Received : 2016.06.16
  • Accepted : 2016.09.13
  • Published : 2016.11.30

Abstract

Omija-cheong, concentrated extracts from sugar-treated Omija fruit (Schisandra chinensis Baillon), is produced by traditional manner in Korea. The quality characteristics of Omija-cheong processed at low temperature with a pilot-scale were investigated to optimize the incubation time. With increasing incubation time in processing Omija-cheong, the pH level of Omija-cheong remained constant, while titratable acidity and organic acids increased. Fresh Omija fruits contained citric, malic and succinic acids, most of which were extracted into concentrated extracts after 37 days of incubation and reached to the stable concentration after 47 days of incubation. Titratable acidity in Omija-cheong gradually increased from 1.18% to 2.71%, and also was correlated with total concentration of organic acids. About 80% of supplemented sucrose for manufacturing Omija-cheong was converted into glucose and fructose until 68 days of incubation, and the composition of free sugars was maintained to be stable up to 138 days of incubation. The contents of total flavonoids and phenolic compounds in Omija-cheong were 24.1 mg-GAE/L and 1,635 mg-QE/L at 57 days of incubation, which were more than 9 and 5 times higher than those in Omija fruits, respectively. From the quality characteristics in processing Omija-cheong by low-temperature incubation, more than 60 days of incubation is required for the constant quality and value-added beverage.

전통적인 저온숙성 당절임 방법을 이용한 오미자청의 제조과정에서 최적의 배양시간을 찾기 위하여 파일럿 규모(1톤)의 연구를 시행하였다. 생오미자와 동일한 량으로 투입된 설탕은 배양시간에 따라 과당과 포도당으로 전환되었으며 오미자청에 존재하는 유리당의 조성은 68일 이상의 배양기간에서는 일정하게 유지되었다. 배양기간에 따른 오미자청의 pH는 일정한 수준을 유지한 반면, 적정 산도와 유기산의 함량은 배양시간 37일까지 지속적으로 증가한 이후 68일 이후에는 일정한 조성을 유지하였다. 생오미자에 존재하는 주요 유기산은 숙신산으로 확인되었으며 오미자청에 존재하는 유기산의 조성 역시 생오미자와 유사하였다. 오미자에 존재하는 주요 생리활성물질인 총 플라보노이드와 폴리페놀화합물은 60일 이상 배양한 오미자청에서 높은 함량을 보이고 138일까지 일정한 수준을 유지하였다. 특히, 오미자청에 함유된 총 플라보노이드와 폴리페놀화합물의 함량은 생오미자 과육에 비하여 각각 9배와 5배 정도 높은 수준으로 증가하였다. 생오미자를 저온숙성 당절임 방법을 적용하여 오미자청으로 제조 가공하는 과정에서 유리당, 유기산 및 생리활성물질 등에 대한 일정한 품질을 확보를 위해서는 최소 60일 이상의 배양기간이 필요한 것으로 확인되었다. 이러한 연구결과는 전통적인 저온숙성 당절임 방법으로 제조 가공되는 오미자청의 고품질화와 기능성 음료 개발을 위한 제조 가공공정의 표준화에 유용한 정보가 될 것으로 판단된다.

Keywords

References

  1. World Health Organization (2007) Fructus Schisandrae. WHO monographs on selected medical plants. Vol. 3, WHO Geneva, p 296-313
  2. Panossian A, Wikman G (2008) Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J Ethnopharmacol, 118, 183-212 https://doi.org/10.1016/j.jep.2008.04.020
  3. Avula B, Choi YW, Srinivas PV, Khan IA (2005) Quantitative determination of lignan constituents from Schisandra chinensis by liquid chromatography. Chromatographia, 61, 515-518 https://doi.org/10.1365/s10337-005-0547-2
  4. Zhang H, Zhang G, Zhu Z, Zhao L, Fei Y, Jing J, Chai Y (2009) Determination of six lignans in Schisandra chinensis (Turcz.) Baill. fruits and related Chinese multiherb remedies by HPLC. Food Chem, 115, 735-739 https://doi.org/10.1016/j.foodchem.2008.12.010
  5. Hancke JL, Burgos R, Ahumada F (1999) Schisandra chinensis (Turcz.) Baill. Fitoterapia, 70, 451-471 https://doi.org/10.1016/S0367-326X(99)00102-1
  6. Kim SR, Lee MK, Koo KA, Kim SH, Sung SH, Lee NG, Markelonis GJ, Oh TH, Yang JH, Kim YC (2004) Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res, 76, 397-405 https://doi.org/10.1002/jnr.20089
  7. Tsi D, Tan A (2008) Evaluation on the combined effect of Sesamin and Schisandra extract on blood fluidity. Bioinformation, 2, 249-252 https://doi.org/10.6026/97320630002249
  8. Giridharan VV, Thandavarayan RA, Sato S, Ko KM, Konishi T (2011) Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic Res, 45, 950-958 https://doi.org/10.3109/10715762.2011.571682
  9. Chen WW, He RR, Li YF, Li SB, Tsoi B, Kurihara H (2011) Pharmacological studies on the anxiolytic effect of standardized Schisandra lignans extract on restraint-stressed mice. Phytomedicine, 18, 1144-1147 https://doi.org/10.1016/j.phymed.2011.06.004
  10. Shao B, Tang J, Ji H, Liu H, Liu Y, Zhu D, Wu L (2010) Enhanced oral bioavailability of Wurenchun (Fructus Schisandrae chinensis extracts) by self-emulsifying drug delivery systems. Drug Dev Ind Pharm, 36, 1356-1363 https://doi.org/10.3109/03639045.2010.480975
  11. Kim SH, Lee BH, Kim JC, Choi SS, Kim GW, Joo MH, Yoo SH (2008) Compositional characterization and colorant identification of Omija (Schizandra chinensis) fruit extract. Food Sci Biotechnol, 17, 787-793
  12. Kim SH, Joo MH, Yoo SH (2009) Structural identification and antioxidant properties of major anthocyanin extracted from Omija (Schizandra chinensis) fruit. J Food Sci, 74, C134-C140 https://doi.org/10.1111/j.1750-3841.2009.01049.x
  13. Ma C, Yang L, Yang F, Wang W, Zhao C, Zu Y (2012) Content and color stability of anthocyanins isolated from Schisandra chinensis fruit. Int J Mol Sci, 13, 14294-14310 https://doi.org/10.3390/ijms131114294
  14. Liu J, Xiao PG (1994) Recent advances in the study of antioxidative effects of Chinese medicinal plants. Phytother Res, 8, 445-451 https://doi.org/10.1002/ptr.2650080802
  15. Lee MH, Kwon HA, Kwon DY, Park H, Sohn DH, Kim YC, Eo SK, Kang HY, Kim SW, Lee JH (2006) Antibacterial activity of medicinal herb extracts against Salmonella. Int J Food Microbiol, 111, 270-275 https://doi.org/10.1016/j.ijfoodmicro.2006.06.004
  16. Liu J, Liu Y, Klaassen CD (1994) The effect of Chinese hepatoprotective medicines on experimental liver injury in mice. J Ethnopharmacol, 42, 183-191 https://doi.org/10.1016/0378-8741(94)90084-1
  17. Kim YJ, Yoo SR, Chae CK, Jung UJ, Choi MS (2014) Omija fruit extract improves endurance and energy metabolism by upregulating PGC-$1{\alpha}$ expression in the skeletal muscle of exercised rats. J Med Food, 17, 28-35 https://doi.org/10.1089/jmf.2013.3071
  18. Jay JM (1998) Modern food microbiology. 5th Ed, A Chapman & Hall Food Science Book, Aspen Publication Gaithersbug, Maryland, USA
  19. Vichapong J, Maliwan S, Voranuch S, Prasan S, Supalax S (2010) High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT-Food Sci Technol, 43, 1325-1330 https://doi.org/10.1016/j.lwt.2010.05.007
  20. Bonoli M, Verardo V, Marconi E, Caboni MF (2004) Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J Agric Food Chem, 52, 5195-5200 https://doi.org/10.1021/jf040075c
  21. Shin SC, Hyun KH, Lee KY (1998) Comparison of the composition of free sugars, amino acids and minerals in black Omija (Schizandra nigra Max.). Korean J Plant Res, 11, 47-50
  22. Nam JS, Choi SK, Kim DS (2010) Quality and sensory characteristics of Bulgogi sauce with various amount of Omija extract juice. Korean J Culinary Res, 16, 247-259
  23. Jeong PH, Kim YS, Shin DH (2006) Changes of physicochemical characteristics of Schizandra chinensis during postharvest ripening at various temperatures. Korean J Food Sci Technol, 38, 469-474
  24. Cho EK, Cho HE, Choi YJ (2010) Antioxidant and antibacterial activities, and tyrosinase and elastase inhibitory effect of fermented Omija (Schizandra chinensis Baillon.) beverage. J Appl Biol Chem, 53, 212-218 https://doi.org/10.3839/jabc.2010.038
  25. Hyun KH, Kim HJ, Jeong HC (2002) A study on determining chemical composition of Schizandra chinensis. Korean J Plant Res, 15, 1-7
  26. Han ES, Rho SN (2008) Physico-chemical properties of Omija extracts made prepared by various immersion conditions. J East Asian Soc Dietary Life, 18, 368-375
  27. Cho SB, Kim HJ, Yoon JI, Chun HS (2003) Kinetic study on the color deterioration of crude anthocyanin extract from Schizandra fruit (Schizandra chinensis fructus). Korean J Food Sci Technol, 35, 23-27
  28. Nam SY, Lee JY, Ko JS, Kim JB, Jang HH, Kim HR, Lee YM (2014) Changes in antioxidant and antimicrobial activities of Schizandra chinensis Baillon under different solvent extraction. Korean J Int Agric, 26, 513-518 https://doi.org/10.12719/KSIA.2014.26.4.513
  29. Kwon HJ, Park CS (2008) Biological activities of extracts from Omija (Schizandra chinensis Baillon). Korean J Food Preserv, 15, 587-592
  30. Cho YJ, Ju IS, Kim BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ (2007) Biological activity of Omija (Schizandra chinensis Baillon) extracts. J Korean Soc Appl Biol Chem, 50, 198-203

Cited by

  1. Effect of Storage Temperature and Pressure Plate Treatment on Chemical Composition in Prunus mume Sugar Extracts vol.24, pp.4, 2020, https://doi.org/10.13050/foodengprog.2020.24.4.309