DOI QR코드

DOI QR Code

Probiotic Effects of Lactobacillus plantarum Strains Isolated from Kimchi

김치에서 분리한 Lactobacillus plantarum 균주들의 프로바이오틱 효과

  • Lee, Xue-Mei (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Hyun Ah (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Kweon, Meera (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Eui-Seong (Department of Food and Nutrition, Yonsei University) ;
  • Park, Kun-Young (Department of Food Science and Biotechnology, Cha University)
  • 이설매 (부산대학교 식품영양학과) ;
  • 이현아 (부산대학교 치의학전문대학원 구강미생물학교실) ;
  • 권미라 (부산대학교 식품영양학과) ;
  • 박의성 (연세대학교 식품영양학과) ;
  • 박건영 (차의과대학교 식품생명공학과)
  • Received : 2016.06.09
  • Accepted : 2016.11.18
  • Published : 2016.12.31

Abstract

Probiotic effects of Lactobacillus plantarum pF1 NITE-P1462 (Lp-pF1), L. plantarum KCCM 11352P (Lp-PNU), L. plantarum CBT LP3 KCTC 10782BP (Lp-CB), and L. plantarum KCTC 3099 (Lp-3099) isolated from kimchi and Lactococcus lactis KFCC 11510P (L-lactis) isolated from Doenjang were studied. Resistance to gastric and bile acid, adhesion to intestines in colon cells, thermal stability, and antioxidative and in vitro anticancer effects in HT-29 cancer cells were evaluated. L. plantarum strains showed improved tolerance of gastric and bile acids than L-lactis. Lp-pF1 had better adhesion ability in the intestine than Lp-PNU, Lp-3099, and L-lactis. Lp-pF1 also showed better heat resistance at $50^{\circ}C$, $70^{\circ}C$, and $80^{\circ}C$ than Lp-CB, Lp-3099, and L-lactis. In addition, Lp-pF1 exhibited greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals and anticancer effects in MTT assay than others. Taken together, these results suggest that L. plantarum isolated from kimchi showed higher probiotic activities with antioxidant and anticancer properties than Lac. lactis isolated from Doenjang. Lp-pF1 revealed the best probiotic activities among L. plantarum and could be used as a promising potential probiotics.

본 연구에서는 김치에서 분리한 L. plantarum pF1 NITE-P1462(Lp-pF1), L. plantarum KCCM 11352P(Lp-PNU), L. plantarum CBT LP3 KCTC 10782BP(Lp-CB)와 L. plantarum KCTC 3099(Lp-3099)의 프로바이오틱 효과(내산 및 내담즙성 측정, 장 부착능과 열 안정성, 항산화 및 항암 기능성의 측정)를 된장에서 유래한 Lac. lactis KFCC 11510P(L-lactis)와 비교하여 측정하였다. 그 결과 4종의 김치 L. plantarum이 Lac. lactis보다 전반적으로 높은 프로바이오틱 효과를 나타내었다. 4종의 김치 L. plantarum 중 내산 및 내담즙성 측정에서 Lp-pF1이 유의적으로 가장 높은 안정성을 나타냈고, 장 부착능 측정에서도 Lp-pF1이 Lp-CB와 함께 가장 뛰어난 부착능을 보였으며, 열 안정성 측면에서는 Lp-pF1과 Lp-PNU가 가장 높은 안정성을 가진 것으로 나타났다. 또한, DPPH 라디칼 및 수산화 라디칼소거 활성 측정을 통해 Lp-pF1이 모든 유산균 중 유의적으로 가장 높은 항산화 활성을 나타내었고, HT-29 인체 대장암세포에서도 가장 높은 암세포 성장 억제 효과를 나타냈다. 따라서 Lp-pF1의 프로바이오틱으로서의 이용가능성을 확인하였으며, Lp-pF1은 특히 높은 항산화 및 항암 활성을 가지고 있어 향후 기능성 프로바이오틱으로 활용할 가능성이 높다고 할 수 있다. 또한, Lp-pF1을 앞서 연구했던 나노화된 Lp-pF1과 함께 섭취하였을 때 단독으로 Lp-pF1만 섭취하는 것보다 더 높은 건강 기능적 효과가 기대되며, 이에 대한 연구도 추가적으로 필요할 것으로 생각된다.

Keywords

References

  1. Park KY, Jeong JK, Lee YE, Daily JW 3rd. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17: 6-22. https://doi.org/10.1089/jmf.2013.3083
  2. Park KY. 1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J Korean Soc Food Nutr 24: 169-182.
  3. Kim HY, Song JL, Chang HK, Kang SA, Park KY. 2014. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice. J Med Food 17: 833-841. https://doi.org/10.1089/jmf.2013.2986
  4. Won TJ, Kim B, Song DS, Lim YT, Oh ES, Lee DI, Park ES, Min H, Park SY, Hwang KW. 2011. Modulation of Th1/Th2 balance by Lactobacillus strains isolated from Kimchi via stimulation of macrophage cell line J774A.1 in vitro. J Food Sci 76: H55-H61. https://doi.org/10.1111/j.1750-3841.2010.02031.x
  5. Choi SM. 2001. Antiobesity and anticancer effects of red pepper powder and kimchi. PhD Dissertation. Pusan National University, Busan, Korea.
  6. Kim B, Park KY, Kim SH, Ahn SC, Cho EJ. 2011. Anti-aging effects and mechanisms of kimchi during fermentation under stress-induced premature senescence cellular system. Food Sci Biotechnol 20: 643-649. https://doi.org/10.1007/s10068-011-0091-9
  7. Islam MS, Choi H. 2009. Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats. J Med Food 12: 292-297. https://doi.org/10.1089/jmf.2008.0181
  8. Park KY, Kim BK. 2012. Lactic acid bacteria in vegetable fermentation. In Lactic Acid Bacteria. Lahtnen S, Ouwehand AC, Salminen S, von Wright A, eds. CRC Press, Boca Raton, FL, USA. p 187-211.
  9. Nguyen TD, Kang JH, Lee MS. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113: 358-361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015
  10. Cebeci A, Gurakan C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol 20: 511-518. https://doi.org/10.1016/S0740-0020(02)00174-0
  11. de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  12. Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 cells and mouse splenocytes. J Microbiol Biotechnol 26: 469-476. https://doi.org/10.4014/jmb.1511.11001
  13. Lee HA. 2016. Dietary nanometric Lactobacillus plantarum exhibits immunostimulatory potential, anti-colitis and anti-colorectal cancer effects in mice. PhD Dissertation. Korea University, Seoul, Korea.
  14. Lee KH, Bong YJ, Lee HA, Kim HY, Park KY. 2016. Probiotic effects of Lactobacillus plantarum and Leuconostoc mesenteroides isolated from kimchi. J Korean Soc Food Sci Nutr 45: 12-19. https://doi.org/10.3746/jkfn.2016.45.1.012
  15. Lee J, Hwang KT, Heo MS, Lee JH, Park KY. 2005. Resistance of Lactobacillus plantarum KCTC 3099 from kimchi to oxidative stress. J Med Food 8: 299-304. https://doi.org/10.1089/jmf.2005.8.299
  16. Lee DK, Park JE, Kim KT, Do MJ, Chung MJ, Lee GS, Kim JE, Ha NJ. 2014. Stability traits of probiotics isolated from Korean on spices and propolis. Korean J Microbiol 50: 216-222. https://doi.org/10.7845/kjm.2014.4041
  17. Lee JO, Ryu CH. 2002. Preparation of low salt doenjang using by nisin-producing lactic acid bacteria. J Korean Soc Food Sci Nutr 31: 75-80. https://doi.org/10.3746/jkfn.2002.31.1.075
  18. Jeong JK, Zheng Y, Choi HS, Han GJ, Park KY. 2010. Catabolic enzyme activities and physiological functionalities of lactic acid bacteria isolated from Korean traditional Meju. J Korean Soc Food Sci Nutr 39: 1854-1859. https://doi.org/10.3746/jkfn.2010.39.12.1854
  19. Liu CT, Chu FJ, Chou CC, Yu RC. 2011. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat Res Genet Toxicol Environ Mutagen 721: 157-162. https://doi.org/10.1016/j.mrgentox.2011.01.005
  20. Kobayashi Y, Toyama K, Terashima T. 1974. Tolerance of a multiple antibiotic resistant strain, Lactobacillus casei PSR 3002, to artificial digestive fluids. Jpn J Bacteriol 29: 691-697. https://doi.org/10.3412/jsb.29.691
  21. Kim SJ, Ma SJ, Kim HL. 2005. Probiotic properties of lactic acid bacteria and yeasts isolated from Korean traditional food. Korean J Food Preserv 12: 184-189.
  22. Jung JK, Kil JH, Kim SK, Jeon JT, Park KY. 2007. Survival of double-microencapsulated Bifidobacterium breve in milk in simulated gastric and small intestinal conditions. J Food Sci Nutr 12: 58-63.
  23. Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila-Sandholm T, Ouwehand AC, Salminen S, von Wright A, Saarela M, Saxelin M, Collines K, Morelli L. 1999. Adhesion studies for probiotics; need for validation and refinement. Trends Food Sci Technol 10: 405-410. https://doi.org/10.1016/S0924-2244(00)00028-5
  24. Cho JK, Li GH, Cho SJ, Yoon YC, Hwang SG, Heo KC, Choe IS. 2007. The identification and physiological properties of Lactobacillus plantarum JK-01 isolated from kimchi. Korean J Food Sci Anim 27: 367-370.
  25. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  26. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  27. Booth IR. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49: 359-378.
  28. Sim JH, Oh SJ, Kim SK, Baek YJ. 1995. Comparative tests on the acid tolerance of some lactic-acid-bacteria species isolated from lactic fermented products. Korean J Food Sci Technol 27: 101-104.
  29. You SJ, Cho JK, Hwang SG, Heo KC. 2005. Probiotic characteristics of Lactobacillus rhamnosus isolated from kefir. Korean J Food Sci Anim Resour 25: 357-364.
  30. Gilliland SE. 1997. Beneficial interrelationships between certain microorganisms and humans: Candidate microorganisms for use as dietary adjuncts. J Food Prot 42: 164-167.
  31. Choi HJ, Lim BR, Kim DW, Kwon GS, Joo WH. 2014. Probiotic properties of Lactobacillus strains isolated from kimchi. J Life Sci 24: 1231-1237. https://doi.org/10.5352/JLS.2014.24.11.1231
  32. Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O'Sullivan GC, Shanahan F, Collins JK. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73: 386S-392S. https://doi.org/10.1093/ajcn/73.2.386s
  33. Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. 1999. Probiotics: mechanisms and established effects. Int Dairy J 9: 43-52. https://doi.org/10.1016/S0958-6946(99)00043-6
  34. Gouesbet G, Jan G, Boyaval P. 2002. Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl Environ Microbiol 68: 1055-1063. https://doi.org/10.1128/AEM.68.3.1055-1063.2002
  35. Zhang S, Liu L, Su Y, Li H, Sun Q, Liang X, Lv J. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr J Microbiol Res 5: 5194-5201.
  36. Lin MY, Chang FJ. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
  37. Kim HS, Jeong SG, Chae HS, Ham JS, Ahn CN, Lee JM. 2004. Antioxidant activity and tolerance to reactive oxygen species of Lactobacillus spp.. J Anim Sci Technol 46: 1007-1012. https://doi.org/10.5187/JAST.2004.46.6.1007
  38. Jung SE, Kim SH. 2015. Probiotic properties of lactic acid bacteria isolated from commercial raw Makgeolli. Korean J Food Sci Technol 47: 44-50. https://doi.org/10.9721/KJFST.2015.47.1.44
  39. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135: 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  40. Chang JH, Shim YY, Cha SK, Chee KM. 2010. Probiotic characteristics of lactic acid bacteria isolated from kimchi. J Appl Microbiol 109: 220-230.
  41. Shin K, Chae O, Park I, Hong S, Choe T. 1998. Antitumor effects of mice fed with cell lysate of Lactobacillus plantarum isolated from kimchi. Korean J Biotechnol Bioeng 13: 357-363.

Cited by

  1. Enhancing the natural killer cell activity and anti-influenza effect of heat-treated Lactobacillus plantarum nF1-fortified yogurt in mice pp.00220302, 2018, https://doi.org/10.3168/jds.2018-15137
  2. Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial vol.11, pp.1, 2020, https://doi.org/10.1007/s13167-020-00198-y
  3. Lactobacillus plantarum에 의한 흰 민들레 발효물의 항산화 및 광노화 억제 효과 vol.22, pp.4, 2016, https://doi.org/10.5762/kais.2021.22.4.554
  4. Skin Antiaging Effects of the Fermented Outer Layers of Leaf Skin of Aloe barbadensis Miller Associated with the Enhancement of Mitochondrial Activities of UVb-Irradiated Human Skin Fibroblasts vol.11, pp.12, 2016, https://doi.org/10.3390/app11125660