DOI QR코드

DOI QR Code

Effect of High Purity β-1.3/1.6-Glucan on Macrophages, Natural Killer Cells, and T Cell-Mediated Factors

고순도 β-1.3/1.6-Glucan이 대식세포 및 자연살해세포와 T 세포면역계에 미치는 영향

  • Kwon, Hanol (Department of Medical Nutrition, Kyung Hee University) ;
  • Lee, Minhee (Department of Medical Nutrition, Kyung Hee University) ;
  • Park, Soo-Jeung (Department of Medical Nutrition, Kyung Hee University) ;
  • Lee, Dasom (Department of Medical Nutrition, Kyung Hee University) ;
  • Kim, Hyesook (Department of Medicine, Kyung Hee University) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
  • 권한올 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이민희 (경희대학교 동서의학대학원 의학영양학과) ;
  • 박수정 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이다솜 (경희대학교 동서의학대학원 의학영양학과) ;
  • 김혜숙 (경희대학교 동서의학대학원 의과학과) ;
  • 이정민 (경희대학교 동서의학대학원 의학영양학과)
  • Received : 2016.06.28
  • Accepted : 2016.08.16
  • Published : 2016.11.30

Abstract

The present study investigated the immunomodulatory effects of high-purity ${\beta}$-1.3/1.6-glucan on macrophages, natural killer (NK) cells, and T cell-mediated factors. Effect of high-purity ${\beta}$-1.3/1.6-glucan on cytotoxicity in macrophages was investigated. Using macrophages, cytotoxicity of high-purity ${\beta}$-1.3/1.6-glucan was evaluated by MTT assay. We treated high-purity ${\beta}$-1.3/1.6-glucan at concentrations of 10, 50, 100, 150, 200, and $250{\mu}g/mL$ in macrophages. High-purity ${\beta}$-1.3/1.6-glucan did not affect macrophage viability. Phagocytic activity was assessed using zymosan. Activity of high-purity ${\beta}$-1.3/1.6-glucan on macrophages significantly increased as compared with zymosan. We treated high-purity ${\beta}$-1.3/1.6-glucan to murine NK cells co-incubated with YAC-1 cells. High-purity ${\beta}$-1.3/1.6-glucan resulted in significantly increased activity of NK cells as compared with the control. In addition, treatment of macrophages with high-purity ${\beta}$-1.3/1.6-glucan resulted in significantly increased activity of T cell-mediated cytokine (IL-2, IL-12, $IFN-{\gamma}$, and $TNF-{\alpha}$) levels and CD4+/CD8+ T cells as compared with the control. In conclusion, high-purity ${\beta}$-1.3/1.6-glucan could enhance the immune response through activation of macrophages, NK cells, and T cell-mediated factors.

본 연구에서는 고순도 ${\beta}$-1.3/1.6-glucan이 선천면역계에 중요한 역할을 하는 대식세포와 자연살해세포의 활성화와 적응면역계에서 중요한 역할을 하는 T 세포 면역계에 대한 면역조절 효과를 살펴보고자 대식세포의 활성능, 자연살해 세포의 활성능, 그리고 T 세포 면역계에 조절작용을 하는 사이토카인, CD4+/CD8+ T 세포에 미치는 영향을 관찰하였다. 마우스 복강에서 불리한 대식세포를 이용하여 세포독성을 확인한 결과 고순도 ${\beta}$-1.3/1.6-glucan $10{\sim}200{\mu}g/mL$의 농도에서 독성이 나타나지 않았다. 또한, 고순도 ${\beta}$-1.3/1.6-glucan은 대식세포의 활성능, 자연살해세포의 활성능에 도움을 주어 활성능을 증가시켜 외부로부터 침입한 미생물, 감염된 세포나 종양세포 등을 효과적으로 제거할 수 있을 것이라 예상할 수 있었다. 마지막으로 T 세포 면역계에 조절작용을 하는 사이토카인과 CD4+/CD8+를 확인한 결과 고순도 ${\beta}$-1.3/1.6-glucan이 사이토카인들의 분비량 및 CD4+/CD8+를 증가시켜 T 세포 면역계에 조절뿐아니라 B 세포 면역계의 조절에 도움을 줄 것이라 예상할 수 있었다. 결론적으로 고순도 ${\beta}$-1.3/1.6-glucan은 선천면역뿐 아니라 적응면역에서 영향을 미칠 것이라 생각하며 면역조절에 긍정적인 변화를 보였으므로 추후 면역 조절제로서 기능성 식품의 상업화에 기초 자료가 되어 국내 기능성 소재로서의 개발 가능성을 기대할 수 있다.

Keywords

References

  1. Willoughby DA. 1974. Human arthritis applied to animal models. Towards a better therapy. Ann Rheum Dis 34: 471-478.
  2. Medzhitov R, Janeway CA Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295-298. https://doi.org/10.1016/S0092-8674(00)80412-2
  3. Greenberg S, Grinstein S. 2002. Phagocytosis and innate immunity. Curr Opin Immunol 14: 136-145. https://doi.org/10.1016/S0952-7915(01)00309-0
  4. Son EH, Yoon YH, Pyo SN. 1999. Immunomodulating activity of alginate. J Appl Pharmacol 7: 377-384.
  5. Nathan CF, Hibbs Jr JB. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3: 65-70. https://doi.org/10.1016/0952-7915(91)90079-G
  6. Cerwenka A, Lanier LL. 2001. Natural killer cells, viruses and cancer. Nat Rev Immunol 1: 41-49. https://doi.org/10.1038/35095564
  7. James GL. 1995. Methods in immunotoxicology. Wiley-Liss, Inc., Hoboken, NJ, USA. Vol 2, p 15.
  8. Teh HS, Kisielow P, Scott B, Kishi H, Uematsu Y, Bluthmann H, von Boehmer H. 1988. Thymic major histocompatibility complex antigens and the ${\alpha}{\beta}$ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335: 229-233. https://doi.org/10.1038/335229a0
  9. Shedlock DJ, Shen H. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337-339. https://doi.org/10.1126/science.1082305
  10. Powire F, Coffman RL. 1993. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today 14: 270-274. https://doi.org/10.1016/0167-5699(93)90044-L
  11. Tong H, Song X, Sun X, Sun G, Du F. 2011. Immunomodulatory and antitumor activities of grape seed proanthocyanidins. J Agric Food Chem 21: 11543-11547.
  12. Baba T, Ogawa T, Okahashi N, Yakushiji T, Koga T, Morimoto M, Hamada S. 1986. Purification and characterisation of the extracellular D-glucosyltransferase from serotype c Streptococcus mutans. Carbohydr Res 158: 147-155. https://doi.org/10.1016/0008-6215(86)84013-7
  13. Manzi P, Pizzoferrato L. 2000. Beta-glucans in edible mushromms. Food Chem 68: 315-318. https://doi.org/10.1016/S0308-8146(99)00197-1
  14. Ghosh DK, Stuehr DJ. 1995. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry 34: 801-807. https://doi.org/10.1021/bi00003a013
  15. Chen J, Tsang LL, Ho LS, Rowlands DK, Gao JY, Ng CP, Chung YW, Chan HC. 2004. Modulation of human enteric epithelial barrier and ion transport function by Peyer's patch lymphocytes. World J Gastroenterol 10: 1594-1599. https://doi.org/10.3748/wjg.v10.i11.1594
  16. Pedersen BK, Ullum H. 1994. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 26: 140-146. https://doi.org/10.1249/00005768-199402000-00003
  17. Whiteside TL, Herberman RB. 1995. The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7: 704-710. https://doi.org/10.1016/0952-7915(95)80080-8
  18. Yoshikai Y, Nishimura H. 2000. The role of interleukin 15 in mounting an immune response against microbial infections. Microbes Infect 2: 381-389. https://doi.org/10.1016/S1286-4579(00)00329-4
  19. Lanier LL. 1998. NK cell receptors. Annu Rev Immunol 16: 359-393. https://doi.org/10.1146/annurev.immunol.16.1.359
  20. Chattopadhyay SK, Sengupta DN, Fredrickson TN, Morse HC 3rd, Hartley JW. 1991. Characteristics and contributions of defective, ecotropic, and mink cell focus-inducing viruses involved in a retrovirus-induced immunodeficiency syndrome of mice. J Virol 65: 4232-4241.
  21. Wright SC, Bonavida B. 1983. YAC-1 variant clones selected for resistance to natural killer cytotoxic factors are also resistant to natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 80: 1688-1692. https://doi.org/10.1073/pnas.80.6.1688
  22. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. 2012. Natural killer cell-produced IFN-${\gamma}$ and TNF-${\alpha}$ induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 91: 299-309. https://doi.org/10.1189/jlb.0611308
  23. Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, Bressler P, Orenstein JM, Fauci AS. 1992. Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. J Exp Med 176: 739-750. https://doi.org/10.1084/jem.176.3.739
  24. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. 2001. Innate or adaptive immunity? The example of natural killer cells. Science 311: 44-49.
  25. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon- gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163-189. https://doi.org/10.1189/jlb.0603252
  26. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. 2002. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196: 851-857. https://doi.org/10.1084/jem.20020190
  27. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10: 29-37. https://doi.org/10.1038/ni.1679