DOI QR코드

DOI QR Code

퉁퉁마디 지상부 분획의 산화방지 활성, 활성산소종 생성과 세포독성 조절작용

Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.)

  • 강스미 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Kang, Smee (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 투고 : 2016.06.06
  • 심사 : 2016.07.13
  • 발행 : 2016.12.31

초록

본 연구에서는 퉁퉁마디 지상부를 70% 메탄올로 추출한 후, 이에 대해 용매분획하여 얻은 Fr.H, Fr.E, Fr.EA, Fr.B, 및 Fr.W, 5분획의 산화방지 효과, ROS 생성효과, 세포독성 효과 및 관련 기작에 대한 기능성을 검토하였다. 이 중 Fr.EA가 가장 높은 폴리페놀 및 플라보노이드 성분 함량을 나타내었으며 Fr.B가 이어서 높은 함량을 보였다. Fr.EA는 DPPH와 ABTS 라디칼 및 아질산이온의 소거에 있어서도 다른 분획들보다 유의적으로 높은 활성을 나타내었으며, 특히 아질산이온의 소거에 가장 뛰어난 활성을 보였다. 리놀레산 지질과산화 시스템에서는 Fr.EA와 Fr.B가 강한 산화억제 활성을 나타내었으며, 이들의 라디칼 소거능은 물론 $Fe^{2+}$에 대한 킬레이트 효과가 지방질산화에 대한 억제기작으로 작용하는 것으로 생각된다. Fr.EA 및 Fr.E가 HCT-116 대장암 세포 및 INT-407 정상장관계 세포에 대해 높은 세포독성을 유발하였으며, 특히 Fr.EA는 HCT-116 대장암 세포에 대해 정상 장관계세포보다 유의적으로 강한 세포독성을 나타내었다. 퉁퉁마디 지상부 분획들은 세포 내에서는 ROS를 감소시키는 산화방지효과를 나타낸 반면 배양액 중에서는 $H_2O_2$를 생성하는 산화촉진 효과도 나타내었으며, Fr.EA와 항산화제인 ascorbic acid 및 N-acetylcysteine 을 같이 세포에 처리하였을 때 세포 독성이 유의적으로 증가하는 현상을 나타내었다. 본 연구에서는 퉁퉁마디 지상부 분획의 산화방지 및 산화촉진 효과와 세포독성 효과를 보고하였으며, 향후 계속적인 연구를 통해 기능성 소재로서의 퉁퉁마디의 이용성 확대가 지속될 것으로 기대한다.

Glasswort (Salicornia herbacea L.) is an edible halophyte that grows in salt marshes. In the present study, anti- and pro-oxidant activities and cytotoxic properties of glasswort were investigated. Solvent fractions, including fractions of hexane, ethylether (Fr.E), ethylacetate (Fr.EA), butanol and water, were prepared from a 70% methanol extract of glasswort aerial parts. Fr.EA contained the highest levels of total polyphenols and flavonoids, showing the strongest scavenging activities against DPPH and ABTS radicals, and nitrite. In addition Fr.EA showed the most potent cytotoxic effects on HCT-116 colon cancer cells and INT-407 normal intestinal cells, followed by Fr.E. Most fractions also decreased the level of reactive oxygen species in the treated cells, but generated $H_2O_2$ in the medium. The cytotoxic activity of Fr.EA was more pronounced in the presence of ascorbic acid or N-acetylcysteine. These results indicate that the fractions from aerial parts of glasswort exhibit both anti- and pro-oxidant activities, and these activities modulate cytotoxic properties.

키워드

참고문헌

  1. Rhee, MH, Park HJ, Cho JY. Salicornia herbacea: Botanical, chemical and pharmacological review of halophyte marsh plant. J. Med. Plants Res. 3: 548-555 (2009)
  2. Lim CW, Park HY, Kim YK, Lee DS, Song KC. Contents of inorganic metals from halophyte and shellfish living in the beach sediment. J. Korean Soc. Appl. Biol. Chem. 50: 121-126 (2007)
  3. Lee JT, Jeong YS, An BJ. Physiological activity of Salicornia hernacea and its application for cosmetic materials. Kor. J. Herbol. 17: 51-60 (2002)
  4. Kim JB, Choe SM, Choe KH, Lim SH, Chai SJ. Funtional components of halophyte: Antioxidant substances in Salicornia herbacea L. J. Fish. Mar. Sci. Edu. 19: 197-205 (2007)
  5. Shin KS, Boo HO, Jeon MW, Ko JY. Chemical components of native plant, Salicornia herbacea L. Korean J. Plant Res. 15: 216-220 (2002)
  6. Cha JY, Jeong JJ, Kim YT, Seo WS, Yang JS, Kim JS, Lee YS. Detection of chemical characteristics in hamcho (Salicornia herbacea L.) according to harvest periods. J. Life Sci. 16: 683-690 (2006) https://doi.org/10.5352/JLS.2006.16.4.683
  7. Im SA, Kim GW, Lee CK. Immunomodulatory activity of Salicornia herbacea L. components. Nat. Prod. Sci. 9: 273-277 (2003)
  8. Min JG, Lee DS, Kim TJ, Park DI. Chemical composition of Salicornia herbacea L. J. Korean Soc. Food Sci. Nutr. 7: 105-107 (2002)
  9. Han SK, Kim SM. Antioxidative effect of Salicornia herbacea L. grown in closed sea beach. J. Korean Soc. Food Sci. Nutr. 32: 207-210 (2003) https://doi.org/10.3746/jkfn.2003.32.2.207
  10. Park SH, Kim KS. Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. J. Korean Soc. Appl. Biol. Chem. 47: 120-123 (2004)
  11. Chung YC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126 (2005) https://doi.org/10.1007/BF02972972
  12. Ryu DS, Kim SH, Lee DS. Anti-proliferative effect of polysac-charides from Salicornia herbacea on inductions of G2/M arrest and apoptosis in human colon cancer cells. J. Microbiol. Biotech. 19: 1482-1489 (2009)
  13. Bang MA, Kim HA, Cho YJ. Hypoglycemic and antioxidant effect of dietary hamcho powder in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 31: 840-846 (2002) https://doi.org/10.3746/jkfn.2002.31.5.840
  14. Cha JY, Jeon BS, Kim BK, Kang HY, Cho YS. Physiological effect of hamcho yogut on streptozotocin-induced diabetic rats. J. Life Sci. 15: 619-625 (2005) https://doi.org/10.5352/JLS.2005.15.4.619
  15. Park SH, Ko SK, Choi JG, Chung SH. Salicornia herbacea prevents high fat diet-induced hyperglycemia and hyperlipidemia in ICR mice. Arch. Pharm. Res. 29: 256-264 (2006) https://doi.org/10.1007/BF02969402
  16. Ryu DS, Kim SH, Lee DS. Immunomodulating activity of Salicornia herbacea extract. Kor. J. Microbiol. Biotechnol. 36: 135-141 (2008)
  17. Choi YM, Kang S, Hong J. Modulation of the inflammatory process and interaction of THP-1 monocytes with intestinal epithelial cells by glasswort (Salicornia herbacea L.) extracts. Korean J. Food Sci. Technol. 48: 378-383 (2016) https://doi.org/10.9721/KJFST.2016.48.4.378
  18. Kang S, Kim DR, Lee BH, Kim MR, Chiang MH, Hong J. Antioxidant properties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seed extracts on human intestinal cells. Food Sci. Biotechnol. 20: 115-122 (2011) https://doi.org/10.1007/s10068-011-0016-7
  19. Kang S, Kim MR, Chiang MH, Hong J. Evaluation and comparison of functional properties of freshwater-cultivated glasswort (Salicornia herbacea L.) with naturally-grown glasswort. Food Sci. Biotechnol. 24: 2245-2250 (2015) https://doi.org/10.1007/s10068-015-0299-1
  20. Park KA, Choi YM, Kang S, Kim MR, Hong J. Effects of proteins on the reactivity of various phenolic compounds with the Folin-Ciocalteu reagent. Korean J. Food Sci. Technol. 47: 299-305 (2015) https://doi.org/10.9721/KJFST.2015.47.3.299
  21. Lee NH, Hong J, Kim JY, Chang MH. Antioxidant properties and protective effects of Inula britannica var. chinensis regel on oxidative stress-induced neuronal cell damage. Korean J. Food Sci. Technol. 41: 87-92 (2009)
  22. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1203 (1958)
  23. Jara PJ, Fulgencio SC. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Res. Int. 39: 791-800 (2006) https://doi.org/10.1016/j.foodres.2006.02.003
  24. Gray JI, Dugan LR. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40: 981-984 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  25. Ambati RR, Ravi S, Vallikannan B, Gokare AR. Antioxidant activity of Botrycoccus braunii extract elucidated in vitro models. J. Agr. Food Chem. 54: 4593-4599 (2006) https://doi.org/10.1021/jf060799j
  26. Oktay M, Gulcin I, Kufrevioglu OI. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm.-Wiss. Technol. 36: 263-271 (2003) https://doi.org/10.1016/S0023-6438(02)00226-8
  27. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Bio. Med. 27: 612-616 (1999) https://doi.org/10.1016/S0891-5849(99)00107-0
  28. Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Bio. Med. 27: 322-328 (1999) https://doi.org/10.1016/S0891-5849(99)00051-9
  29. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  30. Villano D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcia-Parilla MC. Radical scavenging ability of phenolic compounds towards DPPH free radical. Talanta 71: 230-235 (2007) https://doi.org/10.1016/j.talanta.2006.03.050
  31. Graf E, Eaton JW. Antioxidant funtions of phytic acid. Free Radical Bio. Med. 8: 61-69 (1990) https://doi.org/10.1016/0891-5849(90)90146-A
  32. Roos B, Duthie GG. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol. Nutr. Food Res. 59: 1229-1248 (2015) https://doi.org/10.1002/mnfr.201400568
  33. Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337: 1-13 (2004) https://doi.org/10.1016/j.gene.2004.04.032