DOI QR코드

DOI QR Code

Lipopolysaccharide로 유도된 Raw264.7 cell에서 Rhododendron mucronulatum Turcz. Flower으로부터 분리한 myricetin에 의한 염증 억제효과

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells

  • 최무영 (상지대학교 보건과학대학 식품영양학과) ;
  • 홍신협 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 조준효 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 박혜진 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 조재범 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 이재은 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 김동희 (한국한방산업진흥원) ;
  • 김병오 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소) ;
  • 조영제 (경북대학교 농업생명과학대학 식품공학부/식품생물산업연구소)
  • Choi, Moo-Young (Department of Food and Nutrition, College of Health Science, Sangji University) ;
  • Hong, Shin-Hyup (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Cho, Jun-Hyo (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Park, Hye-Jin (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jo, Jae-Bum (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Jae-Eun (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kim, Dong-Hee (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Kim, Byung-Oh (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Cho, Young-Je (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
  • 투고 : 2016.06.03
  • 심사 : 2016.10.05
  • 발행 : 2016.11.30

초록

진달래꽃으로부터 Sephadex LH-20 및 MCI gel CHP-20 column chromatography로 정제한 결과 항염증 활성을 가지는 myricetin을 분리, 동정하였다. Myricetin은 농도 의존적으로 NO 발현을 억제하였고, $50{\mu}M$ 농도에서 약 40%의 억제효과를 나타내었다. Myricetin의 iNOS와 COX-2의 발현억제력은, $25{\mu}M$ 농도에서 각각 20% 및 80%의 protein 발현 억제효과를 나타내었다. 또한 myricetin의 염증반응의 cytokine을 측정하여 $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 및 $PGE_2$의 억제력을 살펴본 결과, 농도 의존적으로 발현억제 효과를 나타내었으며, $50{\mu}M$ 농도에서 각각 70%, 80%, 80% 및 95%의 발현 억제효과를 나타내었다. 따라서 진달래 꽃잎에서 분리한 myricetin은 LPS로 유도되어진 대식세포주인 Raw 264.7 세포에서 염증반응의 억제효과를 기대할 수 있었다.

As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.

키워드

참고문헌

  1. An, B. J., Lee, C. E., Son, J. H., Lee, J. Y., Choi, G. H. and Park, T. S. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. J. Kor. Soc. Appl. Biol. Chem. 48, 280-284.
  2. An, B. J., Lee, J. T., Lee, C. E., Son, J. H., Lee, J. Y and Park, T. S. 2005. A study on the development cosmeceutical ingredient, Rhododendron mucronulatum, and the application of rheology properties. J. Kor. Soc. Appl. Biol. Chem. 48, 273-279.
  3. Anfernee, K. T., Chi-Keung, W., Xiao-Ling, S., Mengsu, Y. and Wang-Fun, F. 2005. Honokiol inhibits TNF-${\alpha}$-stimulated NF-${\kappa}$B activation and NF-${\kappa}$B-regulated gene expression through suppression of IKK activation. Biochem. Pharm. 70, 1443-1457. https://doi.org/10.1016/j.bcp.2005.08.011
  4. Azuma, K., Nakayama, M., Koshika, M., Ippoushi, K., Yamaguchi, Y., Kohata, K., Yamauchi, Y., Ito, H. and Higashio, H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem. 47, 3963-3966. https://doi.org/10.1021/jf990347p
  5. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
  6. Cho, Y. J. and An, B. J. 2008. Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide- stimulated Raw cells. J. Kor. Soc. Appl. Biol. Chem. 51, 44-48.
  7. Chung, T. Y., Kim, M. A. and Daniel, J. 1996. Antioxidative activity of phenolic acids isolated from Jindalae flowers (Rhododendron mucronulatum Turczaninow). Agric. Chem. Biotechnol. 39, 506-511.
  8. Chung, T. Y., Kim, M. A. and Daniel, J. 1996. Antioxidative activity of flavonoids isolated from Jindalae flowers (Rhododendron mucronulatum Turcz.). Agric. Chem. Biotechnol. 39, 320-326.
  9. Chung, T. Y. and Lee, S. E. 1991. Volatile flavor components of Jindalae flower (Korean azalea flower, Rhododendron mucronulatum Turczaninow). J. Kor. Agric. Chem. Soc. 34, 344-352.
  10. Dural, B. and Shetty, K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed Anise root extract. J. Food Biochem. 25, 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  11. Gross, S. S. and Wolin, M. S. 1995. Nitric oxide : pathophysiological mechanisms. Annu. Rev. Physiol. 57, 737-769. https://doi.org/10.1146/annurev.ph.57.030195.003513
  12. Ham, S. S., Hong, J. K. and Lee, J. H. 1997. Antimutagenic effects of juices from edible Korean wild herbs. J. Food Sci. Nutr. 2, 155-161.
  13. Huang, M. T., Ho, C. T. and Lee, C. Y. 1992. Phenolic compounds in food. In phenolc compounds in food and their effects on health II. Maple Press, New York. 99, 2-7.
  14. Iwona, M., Barbara, M., Violetta, R. S., Romuald, M., Zbigniew, S., Maciej, K. and Stefania, G. K. 2006. Proinflammatory cytokine (IL-$1{\beta}$, IL-6, IL-12, IL-18 and TNF-${\alpha}$) levels in sera of patients with subacute cutaneous lupus erythematosus. Immunol. Lett. 102, 79-82. https://doi.org/10.1016/j.imlet.2005.08.001
  15. Jang, I. M. 2003. Treaties on asian herbal medicines. Institute of natural science, Seoul University, Seoul, Korea, p. 2052.
  16. Kim, S. C., Jung, Y. S., Lee, J. R., Kim, Y. W., Byun, B. H., Kwon, T. K., Suh, S. I., Byun, S. H and Kwon, Y. K. 2004. Inhibition effect of Phellinus lgniarius water extract on TNF- ${\alpha}$, IL-$1{\beta}$, IL-6 and nitric oxide production in lipopolysaccharide-activated Raw 264.7 cells. Kor. J. Ori. Phy. Pathol. 18, 880-886.
  17. Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. 1998. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147-156. https://doi.org/10.1046/j.1365-2249.1998.00648.x
  18. Lee, O. H., Lee, H. B. and Son, J. Y. 2004. Antimicrobial activities and nitrite-scavenging ability of olive leaf fractions. Kor. J. Soc. Food Cookery Sci. 20, 204-210.
  19. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  20. Moon, T. C., Park, J. O., Chung, K. W., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. 1999. Anti-inflammatory activity of the flavonoid components of Lonicera japonica. Yakhak Hoeji 43, 117-123.
  21. Naoko, K., Satsuki, K. and Shinichi, W. 2005. IL-17 suppresses TNF-${\alpha}$-induced CCL27 production through induction of COX-2 in human keratinocytes. J. Allergy Clin. Immun. 116, 1144-1150. https://doi.org/10.1016/j.jaci.2005.08.014
  22. Nirupama, S., Anil, K. S., Battu, A., Sangita, M., Sudip, G. and Nasreen, Z. E. 2005. Human resistin stimulates the pro-inflammatory cytokines TNF-${\alpha}$ and IL-12 in macrophages by NF-${\kappa}$B-dependent pathway. Biochem. Biophy. Res. Comm. 334, 1092-1101. https://doi.org/10.1016/j.bbrc.2005.06.202
  23. Oshima, H. and Bartsch, H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253-264. https://doi.org/10.1016/0027-5107(94)90245-3
  24. Park, J. C., Hur, J. M. and Park, J. G. 2002. Biological activities of Umbelliferae family plants and their bioactive flavonoids. Food Ind. Nutr. 7, 30-34.
  25. Reissig, J. L., Storminger, J. L. and Leloir, L. F. 1995. A modified colorimetric method for the estimation of N-acetyl amino sugars. J. Biol. Chem. 217, 959-966.
  26. So, M. S., Lee, J. S. and Yi, S. Y. 2004. Inhibition of nitric oxide and cytokines in macrophages by Codonopsis lanceolata. Kor. J. Food Sci. Technol. 36, 986-990.
  27. Stuehr, D. J., Cho, H. J., Kwon, N. S., Weise, M. F. and Nathan, C. F. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 88, 7773-7777. https://doi.org/10.1073/pnas.88.17.7773
  28. Stuehr, D. J. 1999. Mammalian nitric oxide synthase. Biochem. Biophys. Acta. 1411, 217-230.
  29. Suh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40, 1091-1097. https://doi.org/10.1016/S0278-6915(02)00037-6
  30. Syu-ichi, K., Ai, S., Ayako, T., Takako, H., Yu, O., Mayuko, U., Yutaro, O., Norimichi, N. and Masaaki, I. 2005. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in Raw 264.7 macrophages. Life Sci. 25, 1-9.
  31. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215. https://doi.org/10.1042/bj3160209
  32. Willeaume, V., Kruys, V., Mijatovic, T. and Huez, G. 1995. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46, 1-12.
  33. Yang, J., Meyers, K. J., Heide, J. and Lui, R. H. 2004. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 52, 6787-6793. https://doi.org/10.1021/jf0307144
  34. Yun, C. H., Shin, J. S., Park, H. J., Park, J. H. and Lee, K. T. 2010. Inhibition of LPS-induced iNOS, COX-2 expression and cytokines production by fupenjic acid in macrophage cells. Kor. J. Pharmacogn. 41, 14-20.