DOI QR코드

DOI QR Code

Removal potential of dissolved gas in gas hydrate desalination process by reverse osmosis

역삼투막을 이용한 가스하이드레이트 해수담수화 공정 내 용존 가스의 제거 가능성 평가

  • Ryu, Hyunwook (Department of civil engineering, Pukyong National University) ;
  • Kim, Minseok (Department of civil engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of chemical engineering, Pukyong National University) ;
  • Kim, Joung Ha (Korea Institute of Industrial Technology) ;
  • Lee, Ju Dong (Korea Institute of Industrial Technology) ;
  • Kim, Suhan (Department of civil engineering, Pukyong National University)
  • Received : 2016.07.06
  • Accepted : 2016.10.14
  • Published : 2016.12.23

Abstract

Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.

Keywords

References

  1. Akiya, T., Shimazaki, T., Oowa, M., Matsuno, M., Yoshida, Y. (1999). Formation conditions of clathrates between HFC alternative refrigerants and Water, Int. J. Thermodyn., 20, 1753-1763. https://doi.org/10.1023/A:1022614114505
  2. Anderson, G.K. (2003). Enthalpy of dissociation and hydration number of carbon dioxide hydrate from Clapeyron equation, J. Chem. Thermodyn., 35, 1171-1183. https://doi.org/10.1016/S0021-9614(03)00093-4
  3. Barrer, R.M., Edge, A.V.J. (1967). Proc. Roy. Soc., London, 1, A300.
  4. Bozzo, A.T., Chen, H.S., Kass, J.R., Barduhn, A.J. (1975). The proprieties of Hydrate of chlorine and carbon dioxide, Desalination, 16, 303-320. https://doi.org/10.1016/S0011-9164(00)88004-2
  5. Cassandra, P. (2011). An investigation into the use of fluorinated hydrating agents in the desalination of industrial wastewater, Mater's Thesis, University of Kwa-Zulu Natal, Durban, Republic of South Africa.
  6. Cha, J.H., Seol, Y. (2013). Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests, ACS Sustainable Chem. Eng., 1, 1218-1224. https://doi.org/10.1021/sc400160u
  7. CSM, http://www.csmfilter.com/csm/03result/Software.asp (July 4, 2016)
  8. Dow liquid separations, Filmtec reverse osmosis membrane technical manual, The Dow Chemical Company Form No. 609-00071-0705, 2005.
  9. Dyadin, Y.A., Larionov, E.G., Mirinslij, D.S., Mikina, T.V., Alakado, E.Y., Starostina, L.I. (1997). Phase diagram of the Xe-H2O system up to 15 kbar, J. Inclus. Phenom. Mol., 28, 271-285. https://doi.org/10.1023/A:1007911123739
  10. Eslamimanesh, A., Mohammadi, A.H., Richon, D. (2011). Thermodynamic model for predicting phase equilibria of simple clathrate hydrates of refrigerants, Chem. Eng. Sci., 66, 5439-5445 https://doi.org/10.1016/j.ces.2011.06.062
  11. Han, S., Shin, J.Y., Rhee, Y.W., Kang, S.P. (2014). Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating, Desalination, 354, 17-22. https://doi.org/10.1016/j.desal.2014.09.023
  12. Handa, Y.P. (1986). Calorimetric studies of laboratory synthesized and naturally occurring gas hydrates, AIChE. J., 28, 2-7.
  13. Kang, K.C., Linga, P., Park, P., Choi, S.J., Lee, J.D. (2014). Seawater desalination by gas hydrate process and removal characteristics of dissolved ions ($Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+},\;B^{3+},\;Cl^-,\;SO_4^^{2-}$), Desalination, 353, 84-90. https://doi.org/10.1016/j.desal.2014.09.007
  14. Kang, S.P., Lee, H., Ryu, B.J. (2001). Enthalpies of dissociation of clathrate hydrate of carbon dioxide nitrogen, (carbon dioxide+nitrogen), and carbon dioxide+nitrogen+tetrahydrofuran), J. Chem. Thermodyn., 33, 513-521. https://doi.org/10.1006/jcht.2000.0765
  15. Kawazoe. A., Sugahara, K., Ohgaki, K., Sugahara. T. (2009). High-pressure phase equilibrium and raman spectroscopic studies on the nitrous oxide hydrate system, J. Chem., Eng., 54, 2301-2303.
  16. Kim, I.S., Oh, B.S. (2008). Technologies of seawater desalination and wastewater reuse for solving water shortage, J. Korean Soc. Environ, Eng., 30(12), 1197-1202.
  17. Kim, S., Cho, D., Lee, M.S., Oh, B.S., Kim, J.H., Kim, I.S. (2009). SEAHERO R&D program and key strategies for the scale-up fo a seawater reverse osmosis (SWRO) system, Desalination, 238, 1-9. https://doi.org/10.1016/j.desal.2008.01.029
  18. Korea Ocean Research Development Institute (2015), Development of key technology in seawater desalination using gas hydrate process, Report No. 20110141-1, 99-100.
  19. Kubota, H., Shimizu, K., Tanaka, Y., Makita, T. (1984). Thermodynamic properties of R13 (CCIF3), R23 (CHF3), R152a (C2H4F2), and propane hydrates for desalination of seawater, Journal of Chemical Engineering of Japan, 17(4), 423-428. https://doi.org/10.1252/jcej.17.423
  20. Lederhos, J.P., Long, J.P., Sum, A., Christiansen, R.L., Sloan, E.D. (1996). Effective kinetic inhibitors for natural gas hydrate, Chem. Eng. Sci., 51, 1221-1229. https://doi.org/10.1016/0009-2509(95)00370-3
  21. Lee, H., Ryu, H., Lim, J.H., Kim, J.O., Lee, J.D., Kim, S. (2016). An optimal design approach of gas hydrate and reverse osmosis hybrid system for seawater desalination. Desal. Water Treat., 57, 9009-9017. https://doi.org/10.1080/19443994.2015.1049405
  22. Liang, D., Guo, K., Wang, R., Fan, S. (2001). Hydrate equilibrium data of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-dichloro-1-fluoroethane (HCFC-141b) and 1,1-difluoroethane (HFC-152a). Fluid. Phase. Equilibr., 187-188, 61-70. https://doi.org/10.1016/S0378-3812(01)00526-X
  23. Lippmann, D., Kessel, D., Rahimian, I. (1995). Gas hydrate nucleation and growth kinetics in multiphase transportation system, Proceeding of the Fifth International Offshore and Polar Engineering Conference, 11-16 June, 1995, Hague, Netherlands, International Society of Offshore and Polar Engineers.
  24. Lu, H., Matsumoto, R., Tsuju, Y., Oda, H. (2001). Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution-a recognition from experimental results, Fluid. Phase. Equilibr., 178, 225-232. https://doi.org/10.1016/S0378-3812(00)00464-7
  25. Makino, T., Inoue, Y., Ohgaki, K., Hashimoto, S. (2010). Three-phase equilibrium relations and hydrate dissociation enthalpies for hydrofluorocarbon hydrate system: HFC-134a, -125, and -143a Hydrates, J. Chem. Eng., 55, 4951-4955.
  26. Miyauchi, H., Inoue, Y., Ohgaki, K., Hashimoto, S. (2010). Thermodynamic and raman spectroscopic studies on difluoromethane (HFC-32) + water binary system, J. Chem. Eng., 55, 2764-2768.
  27. Mohammadi, A.H., Richon, D. (2009). Equilibrium data of nitrous oxide and carbon dioxide clathrate hydrates, Journal of Chemical and Engineering, 54, 279-281.
  28. Mooijer-van den Heuvel, M.M., Peters, C.J., de Swaan Arons, J. (2000). Influence of water-insoluble organic components on the gas hydrate equilibrium conditions of methane. Fluid. Phase. Equilibr., 172, 73-91. https://doi.org/10.1016/S0378-3812(00)00367-8
  29. Morita, K., Nakano, S., Ohgaki, K. (2000). Structure and stability of ethane hydrate crystal, Fluid. Phase. Equilibr., 169, 167-175. https://doi.org/10.1016/S0378-3812(00)00320-4
  30. Nixdorf. J., Oellrich, L.R. (1997). Experimental determination of hydrate equilibrium conditions for pure gases, binary and ternary mixture and natural gases, Fluid. Phase. Equilibr., 139, 325-333. https://doi.org/10.1016/S0378-3812(97)00141-6
  31. Park, K.N., Hong, S.Y., Lee, J.W., Kang, K,C., Lee, Y.C., Ha, M.G., Lee, J.D. (2011). A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals ($Na^+,\;Mg^{2+},\;Ca^{2+},\;K^+\;B^{3+}$), Desalination, 274, 91-96. https://doi.org/10.1016/j.desal.2011.01.084
  32. Qazi Nasir, K.K., Lau, B.L. (2014). Enthalpies of dissociation of pure methane and carbon dioxide gas hydrate, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8(8).
  33. Ripmeester, J.A. (2000). Hydrate research-from correlations to a knowledge based discipline, Annals of the New York Academy of Sciences, 16, 912.
  34. Shide, M., Jiawen, H., Dehui, Z., Yongquan L. (2013) Thermodynamic modeling of ternary $CH_4-H_2O-NaCl$ fluid inclusions, Chemical Geology, 335, 128-135. https://doi.org/10.1016/j.chemgeo.2012.11.003
  35. Shimadzu, http://www.ssi.shimadzu.com/products/product.cfm?product=gcmssolution (July 4, 2016)
  36. Sloan, E., Fleyfel, F. Jr. (1992). Hydrate dissociation enthalpy and guest size, Fluid. Phase. Equilibr., 76, 123-140. https://doi.org/10.1016/0378-3812(92)85082-J
  37. Sugahara, K., Yoshida, M., Sugahara, T., Ohgaki, K. (2004). High-pressure phase behavior and cage occupancy for the CF4 hydrate system, J. Chem. Eng., 49, 326-329.
  38. Sugahara, K., Yoshida, M., Suhagara, T., Ohgaki, K. (2006). Thermodynamic and Raman Spectroscopic Studies on Pressure-Induced Structural Transition of SF6 Hydrate, J. Chem. Eng., 51, 301-304.
  39. Sugahara, T., Endo, A., Miyauchi, H., Choi, S.A., Matsumoto, Y., Yasuda, K., Hashimoto, S., Ohgaki, K. (2011). High-pressure phase equilibrium and raman spectroscopic studies on the 1,1-Difluoroethane (HFC-152a) hydrate system, J. Chem. Eng., 56, 4592-4596.

Cited by

  1. Vacuum degassing of aqueous tetrafluroethane (R134a) solution during seawater desalination utilizing gas hydrate vol.498, pp.None, 2016, https://doi.org/10.1016/j.desal.2020.114754