DOI QR코드

DOI QR Code

A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct

정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구

  • Chen, Jing-Jing (Dept. of Mechanical Engineering, Graduate School, Gachon Univ.) ;
  • Yoon, Jun-Kyu (Dept. of Mechanical Engineering, Gachon Univ.)
  • 진정정 (가천대학교 대학원 기계공학과) ;
  • 윤준규 (가천대학교 기계공학과)
  • Received : 2016.07.07
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

This study numerically analyzes the characteristics of the velocity distribution for each location of a square-sectional $180^{\circ}$ bent duct using a Reynolds Stress Turbulent model. The flow parameters were varied, including the working fluids, inlet velocity, surface roughness, radius of curvature, and hydraulic diameter. The boundary conditions for computational fluid dynamics analysis were inlet temperatures of air and water of 288 K and 293 K, inlet air velocity of 3-15 m/s, inner surface roughness of 0-0.001 mm, radius of curvature of 2.5-4.5 D, and hydraulic diameter of 70-100 mm. The working fluid characteristics were highly affected by changes in the viscous force. The maximum velocity profiles in the bent duct were indicated when the $90^{\circ}$ section was in the region of X/D=0.8 and the $180^{\circ}$ section was in the region of Y/D=0.8. Lower surface roughness and higher radius of curvature resulted in a higher rate of velocity change. Also, an efficient measuring location downstream of the bent duct is suggested since the flow deviations were the most stable when the straight duct length was in the region of L/D=30. The minimum deviations at the same velocity conditions according to the hydraulic diameter were mostly indicated in the range of L/D=15-30 based on the standard deviation characteristics.

본 연구는 정사각형 단면 $180^{\circ}$ 곡관 내의 유동특성을 파악하기 위해 RSM 난류모델을 이용하여 작동유체, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경 등의 다양한 유동인자를 변경하여 각도 위치별 속도분포특성을 수치해석을 통하여 고찰하였다. CFD 해석시 경계조건은 공기와 물의 입구온도를 288 K, 293 K로 설정하였고, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경은 각각 3~15 m/s, 0~0.001 mm, 2.5~4.5D, 70~100 mm로 적용하여 해석을 수행하였다. 그 결과를 정리하면, 작동유체의 유동특성은 유체의 점성력 차이로 속도분포가 크게 달라짐을 알 수 있었고, 곡관부 내에서의 최대 속도프로파일은 $90^{\circ}$ 단면위치에서 X/D=0.8 영역으로 나타났으며, $180^{\circ}$ 단면위치에서는 Y/D=0.8 영역으로 나타났다. 그리고 관내의 표면조도가 낮고, 곡률반경이 클수록 속도변화율은 크게 변하여 나타냈다. 또한 곡관후류의 직관부에서 유동편차가 안정화되는 직관거리는 L/D=30 영역에서 나타내어 유량 계측시 유효한 측정위치로 잘 제시할 수 있었으며, 수력직경에 따라 곡관후류 직관부의 표준편차특성은 동일한 유속일 때 최소의 편차영역은 대체로 직관거리 L/D=15~30 범위로 나타났다.

Keywords

References

  1. J. S. Maeng and J. S. Lee, "Three dimensional turbulent flow analysis in a $90^{\circ}$ square sectioned duct with strong curvature", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol. 3, no. 1, pp. 11-25, 1991.
  2. D. H. Koh, D. J. Kang and D. J. Song, "Numerical simulation of the flow characteristics inside a U-type tube", Journal of Computational Fluids Engineering, vol. 14, no. 3, pp. 105-141, 2009.
  3. H. Y. Sohn, H. N. Lee, G. M. Park and H. G. Lee, "A study on the axial velocity profile of development laminar flows in a straight duct connected to a square curved duct", Transactions of the Korean Society of Mechanical Engineers-B, vol. 28, no. 9, pp. 1058-1065, 2004. https://doi.org/10.3795/KSME-B.2004.28.9.1058
  4. H. Y. Sohn, H. N. Lee and G. M. Park, "Axial velocity profiles and secondary flows of developing laminar flows in a straight connected exit region of a $180^{\circ}$ square curved duct", Transactions of the Korean Society of Mechanical Engineers-B, vol. 29, no. 10, pp. 1092-1100, 2005. https://doi.org/10.3795/KSME-B.2005.29.10.1092
  5. G. M. Park, T. G. Bong and H. C. Son, "A study on the flow characteristics of developing transitional steady flows in the entrance region of a curved duct", Journal of the Korean Society of Marine Engineering, vol. 23, no. 1, pp. 33-39, 1999.
  6. T. K. Bong and D. H. Cho. "A study on the influence of centrifugal force for flow characteristics in square-sectional air duct", Journal of the Korean Society of Marine Environment and Safety, vol. 18, no. 5, pp. 455-460, 2012. DOI: http://dx.doi.org/10.7837/kosomes.2012.18.5.455
  7. I. H. Lim and Y. T. Yoo, "A experimental study on velocity distribution of outlet region in a square duct", Proceedings of the Korean Society of Mechanical Engineers, pp. 1783-1789, 2002.
  8. S. J. Yang and Y. D. Choi, "A study of turbulent model on the heat transfer in a square duct a $180^{\circ}$ bend", Proceedings of the Korean Society of Mechanical Engineers, pp. 43-47, 1992.
  9. R. W. Johnson, "Turbulent Convecting flow in a square duct with a $180^{\circ}$ bend: an experimental and numerical study", Ph. D. Thesis, University of Manchester, 1984.
  10. H. G. Lee, H. C. Son, H. N. Lee and G. M. Park, "Axial direction velocity and wall shear stress distributions of turbulent steady flow in a curved duct", Journal of the Korean Society of Marine Engineering, vol. 25, no. 1, pp. 131-138, 2001.
  11. G. H. Lee and J. H. Back, "A numerical study on the flow development around a rotation square-sectioned U-bend (II)", Transactions of the Korean Society of Mechanical Engineers-B, vol. 26, no. 6, pp. 850-858, 2002. https://doi.org/10.3795/KSME-B.2002.26.6.850
  12. P. Rudolf and M. Desova, "Flow characteristics of curved ducts", Applied and Computational Mechanics 1, pp. 255-264, 2007.
  13. C. Carlander and J. Delsing, "Installation effects on an ultrasonic flow meter with implications for self diagnostics", Flow Measurement and Instrumentation 11, pp. 109-122, 2000. https://doi.org/10.1016/S0955-5986(00)00005-4
  14. S. M. Chang, J. A. C. Humphrey and A. Modavi, "Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections", PCH PhysicoChemical Hydrodynamics, vol. 4, no. 3, pp. 243-269, 1983.