DOI QR코드

DOI QR Code

Effects of Freezing and Thawing Treatments on Natural Microflora, Inoculated Listeria monocytogenes and Campylobacter jejuni on Chicken Breast

냉동과 해동처리가 계육 가슴살의 natural microflora, 접종된 Listeria monocytogenes와 Campylobacter jejuni에 미치는 영향

  • Choi, Eun Ji (Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi) ;
  • Chung, Young Bae (Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi) ;
  • Kim, Jin Se (Postharvest Engineering Division, National Academy of Agricultural Science, RDA) ;
  • Chun, Ho Hyun (Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi)
  • 최은지 (세계김치연구소 신공정발효연구단) ;
  • 정영배 (세계김치연구소 신공정발효연구단) ;
  • 김진세 (농촌진흥청 국립농업과학원 수확후관리공학과) ;
  • 천호현 (세계김치연구소 신공정발효연구단)
  • Received : 2015.11.09
  • Accepted : 2016.02.17
  • Published : 2016.02.28

Abstract

The effects of freezing and thawing conditions on microbiological quality and microstructure change of inoculated (Listeria monocytogenes and Campylobacter jejuni) and non-inoculated chicken breasts were investigated. Chicken breasts were frozen with air blast freezing (-20, -70, and $-150^{\circ}C$), ethanol ($-70^{\circ}C$) and liquid nitrogen ($-196^{\circ}C$) immersion freezing. There were no significant differences on the populations of L. monocytogenes inoculated with chicken breasts under different freezing conditions. However, air blast freezing ($-20^{\circ}C$) resulted in significant reductions for total aerobic bacteria and C. jejuni compared to the control and other freezing treatments. The frozen samples were thawed with (hot or cold) air blast, water immersion, and high pressure thawing at $4^{\circ}C$ and $25^{\circ}C$. the populations of total aerobic bacteria, and yeast and mold in the frozen chicken breast increased by 5.78 and 4.05 log CFU/g after water immersion thawing ($25^{\circ}C$) treatment. After five freeze-thaw cycles, the populations of total aerobic bacteria, yeast and mold, and C. jejuni were reduced by 0.29~1.40 log cycles, while there were no significant differences (P > 0.05) in the populations of L. monocytogenes depending on the freeze-thaw cycles. In addition, the histological examination of chicken breasts showed an increase in spacing between the muscle fiber and torn muscle fiber bundles as the number of freeze-thaw cycles increased. These results indicate that freezing and thawing processes could affect in the levels of microbial contamination and the histological change of chicken breasts.

본 연구는 다양한 냉동과 해동처리에 따른 계육 가슴살에 natural microflora, 접종된 L. monocytogenes와 C. jejuni 수와 미세구조 변화 구명을 위하여 연구를 수행하였다. $-20^{\circ}C$ 송풍식 냉동처리구의 총 호기성 세균과 C. jejuni 수는 4.06 log CFU/g과 4.09 log CFU/g으로 대조구와 비교하여 각각 약 0.7 log CFU/g과 1.0 log CFU/g의 감소를 보였다. 한편, 계육 가슴살 접종된 L. monocytogenes 수는 냉동방법과 냉동온도에 따라 유의적인 차이를 보이지 않았다. $4^{\circ}C$$25^{\circ}C$ 송풍식 해동처리구의 총 호기성 세균수는 3.70 log CFU/g과 4.02 log CFU/g으로 측정되어 대조구와 비교하여 각각 0.72 log CFU/g과 0.40 log CFU/g 감소한 반면 $25^{\circ}C$ 유수식 해동처리구의 총 호기성 세균 수는 해동과정에서 균수가 급격히 증가하여 5.78 log CFU/g으로 관찰되었다. 해동 중 C. jejuni 수 변화는 해동방법보다 해동온도에 영향을 받는 것으로 나타났다. 냉동-해동 반복 5회 후 총 호기성 세균과 효모 및 곰팡이 수는 감소하여 각각 4.15 log CFU/g과 2.30 log CFU/g을 보였다. 계육 가슴살에 접종된 L. monocytogenes 수는 냉동-해동 반복처리에 유의적인 영향이 없었지만 C. jejuni 수는 냉동-해동 반복 횟수가 증가함에 따라 감소하는 경향을 보였다. 냉동-해동 반복이 증가함에 따라 근섬유 조직을 재 손상시켰으며 특히 냉동-해동 반복 5회 후에는 계육 가슴살 시료의 조직세포 외부뿐만 아니라 내부에서도 공간이 발생하였으며 불균일하게 찢어진 세포가 관찰되었다.

Keywords

References

  1. Oh J.H., Yoon S., Choi Y.: The effect of superheated steam cooking condition on physico-chemical and sensory characteristics of chicken breast fillets. Korean J. Food Cook. Sci., 30, 317-324 (2014). https://doi.org/10.9724/kfcs.2014.30.3.317
  2. Chae H.S., Cho S.H., Park B.Y., Yoo Y.M., Kim J.H., Ahn C.N., Lee J.M., Kim Y.K., Yun S.G., Choi Y.I.: Comparison of chemical composition in different portions of domestic broiler meat. Korean J. Poult. Sci., 29, 51-57 (2002).
  3. Shim K.B., Hong G.P., Choi M.J., Min S.G.: Effect of high pressure freezing and thawing process on the physical properties of pork. Korean J. Food Sci. Ani. Resour., 29, 736-742 (2009). https://doi.org/10.5851/kosfa.2009.29.6.736
  4. Leygonie C., Britz T.J. and Hoffman L.C.: Impact of freezing and thawing on the quality of meat: Review. Meat Sci., 91: 93-98 (2012). https://doi.org/10.1016/j.meatsci.2012.01.013
  5. Xanthakis E., Le-Bail A., Ramaswamy H.: Development of an innovative microwave assisted food freezing process. Innov. Food Sci. Emerg., 26, 176-181 (2014). https://doi.org/10.1016/j.ifset.2014.04.003
  6. Anese M., Manzocco L., Panozzo A., Beraldo P., Foschia M., Nicoli MC.: Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int., 46, 50-54 (2012). https://doi.org/10.1016/j.foodres.2011.11.025
  7. Kim Y.B., Woo S.M., Jeong J.Y., Ku S.K., Jeong J.W., Kum J.S., Kim E.M.: Temperature changes during freezing and effect of physicochemical properties after thawing on meat by air blast and magnetic resonance quick freezing. Korean J. Food Sci. An., 33, 763-771 (2013). https://doi.org/10.5851/kosfa.2013.33.6.763
  8. Park M.H., Kwon J.E., Kim S.R., Won J.H., Ji J.Y., Hwang I.K., Kim M.R.: Physicochemical and microbiological properties of pork by various thawing methods. J. East Asian Soc. Dietary Life, 22, 298-304 (2012).
  9. Lee J.K., Park J.Y.: Rapid thawing of frozen pork by 915 MHz microwave. Korean J. Food Sci. Technol., 31, 54-61 (1999).
  10. Yun C.G., Lee D.H., Park J.: Ohmic thawing of a frozen meat chunk. Korean J. Food Sci. Technol., 30, 842-847 (1998).
  11. Shibiny A.E., Connerton P., Connerton I.: Survival at refrigeration and freezing temperatures of Campylobacter coli and Campylobacter jejuni on chicken skin applied as axenic and mixed inoculums. Int. J. Food Microbiol., 131, 197-202 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.02.024
  12. Choi M.S., Choi J.A., Kim M.H., Park G.J.: The comparison and distribution of temperatures established in display stands and food surfaces for cold and frozen foods in large discount stores in Korea. J. Fd Hyg. Safety, 26, 308-314 (2011).
  13. Tiganitasa A., Zeakia N., Gounadakib A.S., Drosinosa E.H., Skandamis P.N.: Study of the effect of lethal and sublethal pH and aw stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium. Food microbiol., 134, 104-112 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.02.016
  14. Boziaris I.S., Skandamis P.N., Anastasiadi M., Nychas G.J.: Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations, J. Appl. Microbiol., 102, 796-805 (2007). https://doi.org/10.1111/j.1365-2672.2006.03117.x
  15. Chun H.H., Kim J.Y., Lee B.D., Yu D.J., Song K.B.: Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control, 21, 276-280 (2010). https://doi.org/10.1016/j.foodcont.2009.06.006
  16. Kang H.J., Kim Y.H., Son W.G.: Contamination level of retail meat and chickens by quantitative test of food poisoning bacteria. J. Fd Hyg. Safety, 15, 204-208 (2000).
  17. Park G.B., Ha J.K., Jin S.K., Park T.S., Shin T.S., Lee J.I.: Effects of chilling and packing methods on physico-chemical properties of cold-stored chicken breast and thigh meats. Korean J. Poult. Sci., 24, 17-28 (1997).
  18. Park G.B., Ha J.K., Lee S.K., Chung S.K., Kim H.K., Cho K.S., Shin T.S., Park T.S., Lee J.I.: Effect of packing method on shelf-life and microbiology of frozen chicken. Korean J. Poult. Sci., 23, 203-207 (1996).
  19. Espinoza Rodezno L.A., Sundararajan S., Solval K.M., Chotiko A., Li J., Zhang J., Alfaro L., Bankston J.D., Sathivel S.: Cryogenic and air blast freezing techniques and their effect on the quality of catfish fillets. LWT-Food Sci. Technol., 54, 377-382 (2013). https://doi.org/10.1016/j.lwt.2013.07.005
  20. Liang D., Lin F., Yang G., Yue X., Zhang Q., Zhang Z., Chen H.: Advantages of immersion freezing for quality preservation of litchi fruit during frozen storage. LWT-Food Sci. Technol., 60, 948-956 (2015). https://doi.org/10.1016/j.lwt.2014.10.034
  21. Ko S.H., Hong G.P., Park S.H., Choi M.J., Min S.G.: Studies on physical properties of pork frozen by various high pressure freezing process. Korean J. Food Sci. Ani. Resour., 26, 464-470 (2006).
  22. Barbut S., Zhang L., Marcone M.: Effect of pale, normal, and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. J. Appl Poult Resl., 84, 797-802 (2005).
  23. AOAC: Official methods of Analysis. 16th ed. Association of Official Analytical Chemists, Arlington, Virginia, USA (1995).
  24. Hwang I.G., Jeong H.J., Lee J.S., Kim H.Y., Yoo S.M.: Influences of freezing and thawing temperature on the quality characteristics of mashed red pepper. Korean J. Food Nutr., 25, 691-696 (2012). https://doi.org/10.9799/ksfan.2012.25.3.691
  25. Kang B.S., Kim D.H., Lee O.S.: A study on the changes of pork quality by freezing and thawing methods. Korean J. Culinary Res., 14, 286-292 (2008).
  26. Jo Y.J., Jang M.Y., Jung Y.K., Kim J.H., Sim J.B., Chun J.Y., Yoo S.M., Han G.J., Min S.G.: Effect of novel quick freezing techniques combined with different thawing processes on beef quality. Korean J. Food Sci. An., 34, 777-783 (2014). https://doi.org/10.5851/kosfa.2014.34.6.777
  27. Boonsumrej S., Chaiwanichsiri S., Tantratian S., Suzuki T., Takai R.: Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by airblast and cryogenic freezing. J. Food Eng., 80, 292-299 (2007). https://doi.org/10.1016/j.jfoodeng.2006.04.059
  28. Alizadeh E., Chapleau N., De Lamballerie M., Lebail A.: Effects of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. J. Food Sci., 72, E279- E284 (2007). https://doi.org/10.1111/j.1750-3841.2007.00355.x
  29. Xia X., Kong B., Liu J., Diao X., Liu Q.: Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT-Food Sci. Technol., 46, 280-286 (2012). https://doi.org/10.1016/j.lwt.2011.09.018
  30. Yu L.H., Lee E.S., Jeong J.Y., Paik H.D., Choi J.H., Kim C.J.: Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci., 71, 375-382 (2005). https://doi.org/10.1016/j.meatsci.2005.04.020
  31. Oliveira M.R., Gubert G., Roman S.S., Kempka A.P., Prestes R.C.: Meat quality of chicken breast subjected to different thawing methods. Braz. J. Poult. Sci., 17, 165-172 (2015).
  32. Tejada L., Sanchez E., Gomez R., Vioque M., Fernandez-salguero J.: Effect of freezing and frozen storage on chemical and microbiological characteristics in sheep milk cheese. J. Food Sci., 67, 126-129 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb11371.x
  33. Guo M., Jin T.Z., Yang R., Antenucci R., Mills B., Cassidy J., Scullen O.J., Sites J.E., Rajkowski K.T., Sommers C.H.: Inactivation of natural microflora and inoculated Listeria innocua on whole raw shrimp by ozonated water, antimicrobial coatings, and cryogenic freezing. Food Control, 34, 24- 30 (2013). https://doi.org/10.1016/j.foodcont.2013.04.009
  34. Bhaduri S., Cottrell B.: Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage. Appl. Environ. Microbiol., 70, 7103-7109 (2004). https://doi.org/10.1128/AEM.70.12.7103-7109.2004
  35. Haughton P.N., Lyng J., Cronin D., Fanning S., Whyte P.: Effect of crust freezing applied alone and in combination with ultraviolet light on the survival of Campylobacter on raw chicken. Food Microbiol., 32, 147-151 (2012). https://doi.org/10.1016/j.fm.2012.05.004
  36. Nauta M., Hill A., Rosenquist H., Brynestad S., Fetsch A., van der Logt P., Fazil A., Christensen B., Katsma E., Borck B., Havelaar A.: A comparison of risk assessments on Campylobacter in broiler meat. Int. J. Food Microbiol., 129, 107- 123 (2009). https://doi.org/10.1016/j.ijfoodmicro.2008.12.001
  37. Stavros G.M., Skandamis P.N.: Effect of frozen storage, different thawing methods and cooking processes on the survival of Salmonella spp. and Escherichia coli O157:H7 in commercially shaped beef patties. Meat Sci., 101, 25-32 (2015). https://doi.org/10.1016/j.meatsci.2014.10.031
  38. Speck M.L., Ray b.: Effects of freezing and storage on microorganisms in frozen foods: A review. J. Food Prot., 5, 333-336 (1977).
  39. Song M.S., Lee S.J.: Effect of freezing/thawing cycles on physical properties of beef. Food Eng. Prog., 6, 101-108 (2002).
  40. Garenaux A., Ritz M., Jugiau F., Rama F., Federighi M., de Jonge R.: Role of oxidative stress in C. jejuni inactivation during freeze-thaw treatment. Curr. Microbiol., 58, 134-138 (2009). https://doi.org/10.1007/s00284-008-9289-3
  41. Yamamoto S.A., Harris L.J.: The effects of freezing and thawing on the survival of Escherichia coli O157:H7 in apple juice. Int. J. Food Microbiol., 67, 89-96 (2001). https://doi.org/10.1016/S0168-1605(01)00438-X
  42. Jeong J.Y., Kim G.D., Yang H.S., Joo S.T.: Effect of freezethaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Res. Int., 44, 3222-3228 (2011). https://doi.org/10.1016/j.foodres.2011.08.023

Cited by

  1. Effect of ionized calcium on bacteria contamination in chicken carcass under slaughter process vol.8, pp.11, 2018, https://doi.org/10.1007/s13205-018-1489-3