DOI QR코드

DOI QR Code

The Assessment of Blood Glucose Distribution according to the Fasting State and Glycemic Control Indicators for Diabetes Screening

금식 여부에 따른 혈당치 분포와 당뇨병 선별을 위한 혈당조절지표의 평가

  • Kwon, Pil Seung (Department of Clinical Laboratory Science, Wonkwang Health Science University) ;
  • Rheem, Insoo (Department of Laboratory Medicine, Dankook University Hospital)
  • 권필승 (원광보건대학교 임상병리과) ;
  • 임인수 (단국대학교병원 진단검사의학과)
  • Received : 2016.10.22
  • Accepted : 2016.11.02
  • Published : 2016.12.31

Abstract

This study analyzed the distribution of the blood glucose level according to the fasting status. Moreover, a relationship was analyzed between fasting blood glucose level and glycemic control indicators. A total of 707 outpatients, who visited Dankook University Hospital, were included and classified into either the fasting group and the non-fasting group. The mean blood glucose level of each group was calculated and analyzed by sex, age, and clinic. In addition, blood glucose, HbA1c, fructosamine, and 1,5-AG were measured in 153 fasting health check-up patients, and the correlation between the blood glucose level and glycemic control indicators was evaluated. Blood glucose averages between the two groups (non-fasting 111.9 vs. fasting 103.6 mg/dL) were different (p<0.05); and the mean difference was lower in women (4.8 mg/dL) than in men (12.2 mg/dL). A significant difference of the median glucose values among the age groups was only observed in the non-fasting group (Kruskal-Wallis test, p<0.01), and not in the fasting group. A 1,5-Anhydroglucitol was estimated to be significantly correlated with the fast blood glucose level in the range of the criteria of impaired fasting glucose (IFG). We presented an assessment of the distribution of blood glucose level in accordance with the fasting status among outpatients, and estimated that 1,5-anhydroglucitol was well correlated with the fasting blood glucose than fructosamine and HbA1c, through the analysis of results of health screening subjects. It is suggested that the use of glycemic indicators that reflect short-term blood glucose control can be used together with the blood glucose measurement in the screening of diabetes mellitus.

본 연구는 금식 여부에 따른 혈당치 분포 차이를 분석하였고 공복 혈당치와 혈당조절지표인 당화혈색소, 프록토사민, 1,5-AG의 상관성을 분석하여 전당뇨병 선별에 필요한 추가 정보를 제공하고자 하였다. 단국대학교병원에 내원한 707명의 외래 환자를 금식 군과 비금식 군으로 나누어 혈당 검사를 시행한 후 각 군의 혈당치 평균을 산출하고 성별, 연령별 및 임상과 별 결과치 분포를 분석을 하였다. 또한 건강검진을 목적으로 내원한 금식 상태의 153명에 대해 혈당치와 당화혈색소, 프록토사민, 1,5-AG을 측정하여 혈당치와 혈당조절지표의 상관성을 평가하였다. 비금식 군의 혈당 평균치는 111.9 mg/dL, 금식 군은 103.6 mg/dL로서 유의한 차이가 있었고 (p<0.05) 평균치 차이는 여자가 4.8 mg/dL로서 남자의 12.2 mg/dL보다 적었다. 연령대에 따른 중앙값의 차이는 비금식 군에서만 유의한 차이가 있었고(Kruskal-Wallis test, p<0.01) 금식 군에서는 유의하지 않았다. 공복 시 포도당 장애 선별 구간에서 혈당 농도와 상관성이 높은 검사 종목은 1,5-AG로 평가되었다. 저자들은 금식 여부에 따른 혈당치 분포의 차이를 외래 환자를 대상으로 분석하였으며, 건강검진 대상자의 결과치 분석을 통해 1,5-AG가 프록토사민, 당화혈색소보다 공복 혈당치와 유의한 상관성이 있는 것으로 평가하였다. 당뇨병 선별 시 혈당 측정과 함께 단기 혈당 조절능력을 반영하는 지표가 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. World Health Organization. Definition, diagnosis, and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health Organization; 1999.
  2. Harris MI, Eastman RC, Cowie CC, Flegal KM, Eberhardt MS. Comparison of diabetes diagnostic categories in the U.S. population according to 1997 American Diabetes Association and 1980-1985 World Health Organization diagnostic criteria. Diabetes Care. 1997;20:1859-1862. https://doi.org/10.2337/diacare.20.12.1859
  3. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 2000;23:1108-1112. https://doi.org/10.2337/diacare.23.8.1108
  4. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183-1197. https://doi.org/10.2337/diacare.20.7.1183
  5. Dungan KM. 1,5-anhydroglucitol (Glyco-MarkTM) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn. 2008;8(1):9-19. https://doi.org/10.1586/14737159.8.1.9
  6. Kim CB. A determination of serum fructosamine in relation to blood glucose and glycosylated hemoglobin in diabetes mellitus. Korean Journal of Medical Technologists. 1989;21:88-98.
  7. Kim WJ, Park CY. Review of the potential glycemic markers glycated albumin and 1,5-anhydroglucitol. J Korean Diabetes. 2012;13:1-6. https://doi.org/10.4093/jkd.2012.13.1.1
  8. Aldasouqi SA, Gossain VV. Update on diabetes diagnosis: A historical review of the dilemma of the diagnostic utility of glycohemoglobin A1c and a proposal for a combined glucose-A1c Diagnostic Method. Ann Saudi Med. 2012;32(3):229-235. https://doi.org/10.5144/0256-4947.2012.229
  9. Sofronescu AG, Williams LM, Andrews DM, Zhu Y. Unexpected hemoglobin A1c results. Clin Chem. 2011;57(2):153-156. https://doi.org/10.1373/clinchem.2010.155804
  10. Hom FG, Ettinger B, Lin MJ. Comparison of serum fructosamine vs glycohemoglobin as measures of glycemic control in a large diabetic population. Acta Diabetol. 1998;35:48-51. https://doi.org/10.1007/s005920050100
  11. Tahara Y, Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18:440-447. https://doi.org/10.2337/diacare.18.4.440
  12. Kim WJ, Park CY, Lee KB, Park SE, Rhee EJ, Lee WY, et al. Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care. 2012;35:281-286. https://doi.org/10.2337/dc11-1462
  13. Dworacka M, Winiarska H. The application of plasma 1,5-anhydro-D-glucitol for monitoring type 2 diabetic patients. Dis Markers. 2005;21:127-132. https://doi.org/10.1155/2005/251068
  14. SKim MJ, Jung HS, Hwang-Bo Y, Cho SW, Jang HC, Kim SY, et al. Evaluation of 1,5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol. 2013;50:505-510. https://doi.org/10.1007/s00592-011-0302-0
  15. Yamanouchi T, Akanuma Y, Toyota T, Kuzuya T, Kawai T, Kawazu S, et al. Comparison of 1,5-Anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes. 1991; 40:52-57. https://doi.org/10.2337/diab.40.1.52
  16. Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, et al. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet. 1996;347:1514-1518. https://doi.org/10.1016/S0140-6736(96)90672-8
  17. Watanabe M, Kokubo Y, Higashiyama A, Ono Y, Miyamoto Y, Okamura T. Serum 1,5-anhydro-D-glucitol levels predict firstever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis. 2011;216(2):477-483. https://doi.org/10.1016/j.atherosclerosis.2011.02.033
  18. Dabrowska AM, Tarach JS, Kurowska M. 1,5-Anhydroglucitol (1,5-AG) and Its usefulness in clinical practice. Medical and Biological Sciences. 2012;26(3):11-17.
  19. Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, et al. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet. 1996:347;1514-1518. https://doi.org/10.1016/S0140-6736(96)90672-8
  20. Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, et al. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57:135-140. https://doi.org/10.1507/endocrj.K09E-234
  21. Ryu JR, Ahn JS, Park JY, Nam HC, Kim CS. Comparison of 1,5-anhydroglucitol and HbA1c as clinical marker of glycemic control in type II diabetes mellitus patients. Korean J Clin Lab Sci. 2002;34:101-104.
  22. Frattali AL, Wolf BA. 1,5-anhydroglucitol: a novel serum marker for screening and monitoring diabetes mellitus? Clin Chem. 1994; 40:1991-1993.
  23. Armbruster DA. Fructosamine: structure, analysis, and clinical usefulness. Clin Chem. 1987;33:2153-2163.
  24. Gerstein HC. Fasting versus postload glucose Levels: Why the controversy? Diabetes Care. 2001;24:1855-1857. https://doi.org/10.2337/diacare.24.11.1855
  25. Robertson DA, Alberti KG, Dowse GK, Zimmet P, Tuomilehto J, Gareeboo H. Is serum anhydroglucitol an alternative to the oral glucose tolerance test for diabetes screening? The Mauritius Noncommunicable Diseases Study Group. Diabet Med. 1993;10:56-60. https://doi.org/10.1111/j.1464-5491.1993.tb01997.x
  26. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48:436-472.
  27. Kweon YS, Han YJ, Kim DC, Song HS. Effect of preoperative fasting time on blood glucose concentrations in children. Korean J Anesthesiol. 2000;39(4):528-533. https://doi.org/10.4097/kjae.2000.39.4.528
  28. Kim EY. Glucose metabolism and evaluation of hypoglycemia in neonate. Korean J Pediatr. 2007;50:223-229. https://doi.org/10.3345/kjp.2007.50.3.223
  29. Yamanouchi T, Inoue T, Ogata E, Kashiwabara A, Ogata N, Sekino N, et al. Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci. 2001;101:227-233. https://doi.org/10.1042/cs1010227
  30. Parappil A, Doi SA, Al-Shoumer KA. Diagnostic criteria for diabetes revisited: making use of combined criteria. BMC Endocr Disord. 2002;2(1):1. https://doi.org/10.1186/1472-6823-2-1
  31. Kim KW, Kim YL, Kim SH, Kim Y, Cho IJ. Comparison of hemoglobin A1c and fasting blood glucose for diagnosis of diabetes in Korea. Korean J Fam Pract. 2016;6(5):524-527. https://doi.org/10.21215/kjfp.2016.6.5.524

Cited by

  1. 당뇨병 및 공복혈당장애 예측을 위한 당화혈색소 값 vol.49, pp.2, 2017, https://doi.org/10.15324/kjcls.2017.49.2.114
  2. 공복혈당과 당화혈색소를 적용한 당뇨병 이상소견자의 분포 및 특성 - 당뇨병 기진단자를 제외한 성인을 대상으로 vol.49, pp.3, 2016, https://doi.org/10.15324/kjcls.2017.49.3.239