DOI QR코드

DOI QR Code

Chemical Characterization and Insecticidal Activity of Rubus coreanus Miquel Extracts (Leaves, Fruits and Stems) against Three Agricultural Insect Pests, Myzus persicae, Plutella xylostella and Spodoptera litura

특용작물:복분자의 화학적 특성 및 복분자 부위별 (잎, 열매, 줄기) 추출물을 이용한 농업해충 복숭아혹진딧물, 배추좀나방 및 담배거세미나방에 대한 살충효과 연구

  • 이희권 (고창군 농업기술센터 농촌개발과) ;
  • 이회선 (전북대학교 농업생명과학대학 생물환경화학과)
  • Received : 2016.09.28
  • Accepted : 2016.10.18
  • Published : 2016.11.30

Abstract

In the growth of the Rubus coreanus Miquel fruits, the unripened (10 days) and ripened (25 days) fruits after flowering were harvested. The chemical characteristics of different maturational stages of the unripened and ripened fruits were investigated. Total amount of phenolic compounds was 4.00-7.56% in the unripened fruits and 3.78-5.57% in the ripened fruits, respectively. Furthermore, total amounts of organic acids such as malic, citric, succinic, and oxalic acids were 16.40 mg/100 g in the unripened fruits and 28.82 mg/100 g in the ripened fruits, respectively. In organic acids of the unripened and the ripened fruits, citric acid (8.76-15.47 mg/100 g) was the highest amount among other organic acids. Soluble sugars were significantly increased from 11.07 to 21.54% in the unripened and ripened fruits. Therefore, ripened fruits had the high levels of phenolic compounds, organic acids and soluble sugars. For the biological studies of R. coreanus, methanol extracts of R. coreanus leaves, fruits, and stems were evaluated for their insecticidal activities against Myzus persicae (Hemiptera: Aphididae), Plutella xylostella (Lepioptera: Plutellidae) and Spodoptera litura (Lepioptera: Noctuidae) by leaf dipping method. From these results, the extract of R. coreanus leaves revealed potent insecticidal activity against P. xylostella. However, the methanol extracts of R. coreanus fruits and stems had no any insecticidal activity against M. persicae, P. xylostella and S. litura. The R. coreanus leaves have promising potential as new insecticidal agent against P. xylostella.

복분자 딸기의 숙기별 단계를 미숙기(개화 후 10일), 등숙기(개화 후 25일)로 나누고 복분자 과실 성숙단계별 화학적 특징을 조사한 결과, 총 페놀함량은 미숙기 복분자 딸기4.00-7.56%, 등숙기 복분자 딸기 3.38-5.57%였다. 복분자 딸기의 유기산으로는 미숙기와 등 숙기 복분자 딸기에 모두 malic acid, citric acid, succinic acid 및 oxalic acid를 함유하고 있으며, 복분자 과실의 성숙단계별 총 유기산 함량은 미숙기 복분자 딸기 16.4 mg/100 g, 등숙기 복분자 딸기 28.82 mg/100 g으로 조사되었다. 복분자 과실에 함유된 유기산 중 citric acid 함량은 8.76-15.47 mg/100 g으로 다른 유기산 함량(1.23-5.54 mg/100 g)에 비해 가장 많은 비중을 차지하고 있었다. 복분자 미숙딸기와 완숙딸기에서의 가용성 당 함량은 과실의 성숙이 진행됨에 따라 증가하여 등숙기 복분자 딸기의 총 가용성 당은 21.54%로 미숙기의 복분자 딸기 11.07%보다 더 많이 함유하고 있었다. 이는 복분자 과실의 숙기단계별 화학적 특징 비교에 근거하여 총 페놀, 유기산 및 가용성 당 함량이 완숙상태에서 다량 함유하고 있음을 확인하였다. 복분자 잎, 열매, 줄기 등 부위별로 추출한 추출물을 이용한 농업해충 3종(복숭아혹진딧물, 배추좀나방 및 담배거세미나방)에 대한 살충활성을 본 결과, 복분자 잎추출물이 배추좀나방에 대해 가장 우수한 살충효과의 잠재성을 나타내었다. 앞으로 이들의 구성성분을 이용한 바이오소재 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Cha, H. S., M. S. Park, and K. M. Park. 2001. Physiological activities of Rubus coreanus Miquel. Korean J Food Sci Technol, 33(4): 409-415.
  2. Cha, J. Y. and Y. S. Cho, 1997. Effects of hesperidin, naringin and their aglycones on the vitro assay phosphatidate phosphohydrolase, and on the proliferation in cultured human hepatocytes HepG2 cells. Agri. Chem. Biotech. 40: 577-582.
  3. Cha, J. Y. and Y. S. Cho. 1999. Effect of potato polyphenolics on lipid peroxidation in rats. Korean J. Soc. Food Sci. Nutr. 28: 1131-1136.
  4. Kalra, R. L. and R. P. Chawla. 1977. Evaluation of bioassay techniques for the detection of insecticide resistance on Plutella xylostellaI. FAO Plant Protection Bull. 25: 85-87.
  5. Kim, H. C. 1989. A comparative study on the health effect of Rubus coreanum. Master' degree. thesis. Kyunghee University.
  6. Lee, H. S., G. J. Choi, K. Y. Cho, S. G. Lee, and Y. J. Ahn. 2000. Fungicidal and insecticidal activities of various grain extracts against five insect pests and six phytopathogenic fungi. Kor. J. Pestic. Sci. 4(3): 7-13.
  7. Lee, J. W. and J. H. Do. 2000. Determination of total phenolic compounds from the fruit of Rubus coreanum and antioxidative activity. Korean J. Soc. Food Sci. Nutr. 29(5): 943-947.
  8. Maxson, E. D. and L. W. Rooney. 1972. Evaluation of methods for tannin analysis in Sorghum grain. Cereal Chem. 49: 719-729.
  9. Ohtani, K., C. Miyajima, T. Takahasi, R. Kasai, D. Tanaka, D. R. Hahn, and N. Naruhashi. 1990. A dimeric triterpene-glycoside from Rubus coreanus. Phytochemistry. 29: 3275-3280. https://doi.org/10.1016/0031-9422(90)80199-Q
  10. Papadopoulos, G. and D. Boskou. 1991. Antioxidant effect of natural phenols on olive oil. J. Am. Oil Chem. Soc. 68: 669-675. https://doi.org/10.1007/BF02662292
  11. Park, M. S. 2000. Studies on the physicochemical characteristics and physiological activities of Rubus coreanus miquel. Master' degree. thesis. Sungkyunkwan University.
  12. Romero, R. M. A., O. M. L. Vazquex, H. J. Lopez, and L. J. Simal. 1992. Physical and analytial characteristics of the Rubus idaeus L.. J. Chroma. Sci. 30: 433-437. https://doi.org/10.1093/chromsci/30.11.433
  13. Sawicki, R. M. and A. D. Rice. 1978. Response of susceptible and resistant, Myzus persicae Sulzer (Homotera: Aphididae) to insecticides in leaf dipping bioassay. Pestic. Sci. 9:513-516. https://doi.org/10.1002/ps.2780090604
  14. Tanaka, T., H. Kohda, O. Tanaka, F. H. Chen, W. H. Chou, and J. L. Leu. 1981. Rubusoside (${\beta}$-D-glucosyl ester of 13-O-${\beta}$-D-glucosyl-steviol), a sweet principle of Rubus chingii Hu (Rosaceae). Agric. Biol. Chem. 45: 2165-2170.