DOI QR코드

DOI QR Code

실험실 적응진화를 이용한 Saccharomycopsis fibuligera의 젖산에 대한 내성 증대

Enhanced Resistance to Lactic Acid by Laboratory Adaptive Evolution of Saccharomycopsis fibuligera

  • 유병혁 (강원대학교 식품생명공학과) ;
  • 박은희 (강원대학교 식품생명공학과) ;
  • 김명동 (강원대학교 식품생명공학과)
  • Yoo, Boung-Hyuk (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • 투고 : 2016.08.03
  • 심사 : 2016.10.01
  • 발행 : 2016.12.28

초록

S. fibuligera 균주는 생전분을 분해하는 활성이 있는 효모 균주이다. 본 연구에서는 첨가되는 젖산의 농도가 점차 증가하는 장기간 반복 회분식 배양 방법을 사용하는 적응진화를 통하여 S. fibuligera 균주의 젖산에 대한 내성을 증진시키고자 하였다. 진화된 균주인 S. fibuligera MBY1940 균주는 비성장속도 측정과 평판배지를 사용하는 성장분석을 통하여 모균주가 성장할 수 없는 젖산 농도 2.5%에 대해서도 내성을 나타내는 것을 확인하였다. 전자현미경 관찰을 통하여 젖산이 첨가된 스트레스 조건에서 모균주는 신장된 세포 형태와 세포막에 손상을 입은 것으로 보아 진화된 균주에 비해 젖산에 대하여 상대적으로 취약한 것으로 판단되었다.

Saccharomycopsis fibuligera is an amylolytic yeast that exhibits raw starch-degrading activity. In this study, adaptive laboratory evolution was performed to improve the tolerance of S. fibuligera to lactic acid by prolonged repeated batch fermentation in which the lactic acid concentration was gradually increased. The evolved S. fibuligera strain exhibited a significantly enhanced tolerance to lactic acid at concentrations up to 2.5% (w/v), as assessed by determining its specific growth rate using a plate assay. Scanning electron microscopy revealed an elongated and perforated morphology of the parent strain under lactic acid stress, indicating that its membrane might be more prone to damage caused by lactic acid than that of the evolved strain.

키워드

참고문헌

  1. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. 2009. Saccharomycopsis fibuligera and its applications in biotechnology. Bitechnol. Adv. 27: 423-431. https://doi.org/10.1016/j.biotechadv.2009.03.003
  2. Cho WS, Chung YH, Kim BK, Suh SJ, Koh WS, Choe SH. 2007. Cellulosic ethanol as renewable alternative fuel. J. Plant Biotechnol. 34: 111-118. https://doi.org/10.5010/JPB.2007.34.2.111
  3. Choi DH, Park EH, Kim MD. 2014. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Korean J. Microbiol. Biotechnol. 42: 407-412. https://doi.org/10.4014/kjmb.1409.09006
  4. de Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA Jr. 2010. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J. Appl. Microbiol. 109: 116-127.
  5. Guerzoni ME, Vernocchi P, Ndagijimana M, Gianotti A, Lanciotti R. 2007. Genration of aroma compounds in sourdoguh: Effects of stress exposure and lactobacilli-yeasts interactions. Food Microbiol. 24: 139-148. https://doi.org/10.1016/j.fm.2006.07.007
  6. Harter HL. 2008. Critical values for Duncan's new multiple range test. Biometrics 16: 671-685.
  7. Koschwanez JH, Foster KR, Murray AW. 2013. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife. 2: 00367.
  8. Lee JS, Park EH, Kwun SY, Yeo SH, Kim MD. 2014. Optimization of pretreatment of persimmon peel for ethanol production by yeast fermentation. Korean J. Microbiol. Biotechnol. 42: 202-206. https://doi.org/10.4014/kjmb.1403.03005
  9. Luo Y, Wang J, Liu B, Wang Z, Yuan Y, Yue T. 2015. Effect of yeast cell morphology, cell wall physical structure and chemical composition on patulin adsorption. PLoS One 10: e0136045. https://doi.org/10.1371/journal.pone.0136045
  10. Machida M, Ohtsuki I, Fukui S, Yamashita I. 1988. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular $\beta$-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54: 3147-3155.
  11. Martin D, Diethard M. 2013. Adaptive laboratory evolution - principles and applications for biotechnology. Microbial. Cell Factories 12: 1-17. https://doi.org/10.1186/1475-2859-12-1
  12. Mira NP, Teixeira MC, Sá-Correia I. 2010. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14: 525-540. https://doi.org/10.1089/omi.2010.0072
  13. Mitsumasu K, Liu ZS, Tang YQ, Akamatsu T, Taguchi H, Kida K. 2014. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J. Biosci. Bioeng. 118: 689-695. https://doi.org/10.1016/j.jbiosc.2014.05.012
  14. Mollapour M, Shepherd A, Piper PW. 2008. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25: 169-177. https://doi.org/10.1002/yea.1576
  15. Mozhayskiy V, Tagkopoulos I. 2013. Microbial evolution in vivo and in silico: methods and applications. Integr. Biol. 5: 262-277. https://doi.org/10.1039/C2IB20095C
  16. NG LK, Sherburne R, Taylor DE, Stiles ME. 1985. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 164: 338-343.
  17. Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M. 2015. Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol. J. 10: 1719-1726. https://doi.org/10.1002/biot.201400809
  18. Reddy OV, Basappa SC. 1993. Selection and characterization of Endomycopsis fibuligera strains for one-step fermentation of starch to ethanol. Starch/Starke 45: 187-194. https://doi.org/10.1002/star.19930450509
  19. Skinner KA, Leathers TD. 2004. Bacterial contaminants of fuel ethanol production. J. Ind. Microbiol. Biotechnol. 31: 401-408. https://doi.org/10.1007/s10295-004-0159-0
  20. Skory CD. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J. Ind. Microbiol. Biotechnol. 30: 22-27. https://doi.org/10.1007/s10295-002-0004-2
  21. Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA. 2010. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 37: 139-149. https://doi.org/10.1007/s10295-009-0655-3
  22. Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S. 2012. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J. Biosci. Bioeng. 113: 421-430. https://doi.org/10.1016/j.jbiosc.2011.11.010
  23. Thomas KC, Hynes SH, Ingledew WM. 2002. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Appl. Environ. Microbiol. 68: 1616-1623. https://doi.org/10.1128/AEM.68.4.1616-1623.2002
  24. Tomas KC, Hynes SH, Ingledew WM. 2001. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J. Appl. Microbiol. 90: 819-828. https://doi.org/10.1046/j.1365-2672.2001.01311.x
  25. Viegas CA, Almeida PF, Cavaco M, Sa-Correia I. 1998. The $H^+$- ATPase in the plasma membrane of Saccharomyces cerevisiae is activated during growth latency in octanoic acid-supplemented medium accompanying the decrease in intracellular pH and cell viability. Appl. Environ. Microbiol. 64: 770-783.
  26. Watanabe I, Nakamura T, Shima J. 2008. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. J. Ind. Microbiol. Biotechnol. 35: 1117-1122. https://doi.org/10.1007/s10295-008-0390-1
  27. Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ. 2011. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 11: 299-306. https://doi.org/10.1111/j.1567-1364.2011.00719.x
  28. Xingyan L, Bo J, Xiangyu S, Jingya A, Lihua W, Cheng W, et al. 2015. Effect of initial pH on growth characterisctics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci. 80: 800-808. https://doi.org/10.1111/1750-3841.12813

피인용 문헌

  1. 누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리 vol.47, pp.4, 2016, https://doi.org/10.4014/mbl.1902.02006