Inhibitory Effects of Kaempferol-7-O-β-D-glucoside on LPS-induced NO, PGE2 and Inflammatory Cytokines Production in RAW264.7 Macrophages

LPS유도 대식세포에서 Kaempferol-7-O-β-D-glucoside의 NO, PGE2 및 염증성 사이토카인 생성 저해 효과

  • Park, Jong Cheol (Department of Oriental Medicine Resources, College of Life Science and Natural Resources, Suncheon National University) ;
  • Han, Hee-Soo (Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Lee, Seung-Bin (Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Lee, Kyung-Tae (Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University)
  • 박종철 (국립순천대학교 생명산업과학대학 한약자원개발학과) ;
  • 한희수 (경희대학교 약학대학 약품생화학실) ;
  • 이승빈 (경희대학교 약학대학 약품생화학실) ;
  • 이경태 (경희대학교 약학대학 약품생화학실)
  • Received : 2016.07.19
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

Flavonoids are widely reported to be beneficial to human health. Among flavonoids, in general, flavonoid aglycons have better biological activities than flavonoid glycosides, in that aglycons can easily penetrate through cell membrane because of their low polarity. Therefore, kaempferol, quercetin and various their glycosides were evaluated for their abilities to inhibit NO and $PGE_2$ productions in LPS-induced RAW 264.7 cells. Of these flavonoids and flavonoid glycosides, kaempferol-7-O-${\beta}$-D-glucoside(kp-7-glu) which possesses a glycoside at C-7 position of the A ring in kaempferol, potently inhibited NO, $PGE_2$ and $TNF-{\alpha}$, $IL-1{\beta}$, IL-6 productions in LPS-induced RAW 264.7 macrophages.

Keywords

References

  1. Willoughby, D. A. (1975) Heberden Oration, 1974. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34: 471-478. https://doi.org/10.1136/ard.34.6.471
  2. Guzik, T. J., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54: 469-487.
  3. Kumar, S. and Pandey, A. K. (2013) Chemistry and biological activities of flavonoids : an overview. Scientific World Journal 2013: 162750.
  4. Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang, J. and Liu, J. (2010) Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol. 48: 2980-2987. https://doi.org/10.1016/j.fct.2010.07.037
  5. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K. and Kinoshita, T. (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate. Phytochemistry 48: 125-129. https://doi.org/10.1016/S0031-9422(97)01105-9
  6. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661-665. https://doi.org/10.1038/334661a0
  7. Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: 225-236. https://doi.org/10.1016/0092-8674(95)90405-0
  8. Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int. Immunopharmacol. 11: 1150-1159. https://doi.org/10.1016/j.intimp.2011.03.012
  9. Jagtap, S., Meganathan, K., Wagh, V., Winkler, J., Hescheler, J. and Sachinidis, A. (2009) Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases. Curr. Med. Chem. 16: 1451-1462. https://doi.org/10.2174/092986709787909578
  10. Grienke, U., Richter, M., Walther, E., Hoffmann, A., Kirchmair, J., Makarov, V., Nietzsche, S., Schmidtke, M. and Rollinger, J. M. (2016) Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumonia. Sci. Rep. 6: 27156. https://doi.org/10.1038/srep27156
  11. Kawai, M., Hirano, T., Higa, S., Arimitsu, J., Maruta, M., Kuwahara, Y., Ohkawara, T., Hagihara, K., Yamadori, T., Shima, Y., Ogata, A., Kawase, I. and Tanaka, T. (2007) Flavonoids and related compounds as anti-allergic substancses. Allergol. Int. 56: 113-123. https://doi.org/10.2332/allergolint.R-06-135
  12. Ahn, B. G., Hur, J. M. and Park, J. C. (2007) Isolations of flavonoids and a higher alcohol from the aerial parts of Brassica juncea. Kor. J. Pharmacogn. 38: 254-257.
  13. Park, J. C. and Kim, S. H. (1995) Flavonoid analysis from the leaves of Eucommia ulmoides. J. Korean Soc. Food Nutr. 24: 901-905.
  14. Hur, J. M., Park, J. C. and Hwang, Y. H. (2001) Aromatic acid and flavonoids from the leaves of Zanthoxylum piperitum. Nat. Prod. Sci. 7: 23-26.
  15. Hur, J. M., Lee, J. H., Choi, J. W., Hwang, G. W., Chung, S. K., Kim, M. S. and Park, J. C. (1998) Effect of methanol extract and kaempferol glycosides from Armoracia rusticana on the formation of lipid peroxide in bromobenzene-treated rats in vitro. Kor. J. Pharmacogn. 29: 231-236.
  16. Park, J. C., Young, H. S. and Choi, J. S. (1992) Constituents of Cudrania tricuspidata in Korea. Yakhak Hoeji 36: 40-45.
  17. Park, J. C., Park, J. G., Kim, J. H., Kim, S. H. and Kim, N. J. (1996) Isolation of kaempferol glycoside from Lindera sericea and anti-inflammatory effect. J. Korean Soc. Food Nutr. 25: 519-522.
  18. Park, J. C., Young, H. S., Yu, Y. B. and Lee, J. H. (1993) Phenolic compounds from the leaves of Cedrela sinensis A. Juss. Yakhak Hoeji 37: 306-310.
  19. Jo, H. W. and Park, J. C. (2008) Phenolic compounds isolated from the leaves of Angelica keiskei showing DPPH radical scavenging effect. Kor. J. Pharmacogn. 39: 146-149.
  20. Conese, M. and Assael, B. M. (2001) Bacterial infections and inflammation in the lungs of cystic fibrosis patients. Biol. Pharm. Bull. 34: 959-966.
  21. Mayeux, P. R. (1997) Pathobiology of lipopolysaccharide. J. Toxicol. Environ. Health 51: 415-435. https://doi.org/10.1080/00984109708984034
  22. Kempf, T., Zarbock, A., Vestweber, D. and Wollert, K. C. (2012) Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J. Mol. Med. 90: 361-369. https://doi.org/10.1007/s00109-011-0847-y
  23. Chai, E. Z., Siveen, K. S., Shanmugam, M. K., Arfuso, F. and Sethi, G. (2015) Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J. 468: 1-15. https://doi.org/10.1042/BJ20141337
  24. Bessueille, L. and Magne, D. (2015) Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell. Mol. Life Sci. 72: 2475-2489. https://doi.org/10.1007/s00018-015-1876-4
  25. Kinne, R. W., Bräuer, R., Stuhlmuller, B., Palombo-Kinne, E. and Burmester, G. R. (2000) Macrophages in rheumatoid arthritis. Arthritis Res. 2: 189-202. https://doi.org/10.1186/ar86
  26. Kim, M. S. and Kim, S. H. (2011) Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-$\kappa$B in macrophages. Arch. Pharm. Res. 34: 2101-2107. https://doi.org/10.1007/s12272-011-1213-x
  27. Lee, H. B., Kim, E. K., Park, S. J., Bang, S. G., Kim, T. G. and Chung, D. W. (2011) Isolation and anti-inflammatory effect of astragalin synthesized by enzymatic hydrolysis of tea seed extract. J. Sci. Food Agric. 91: 2315-2321. https://doi.org/10.1002/jsfa.4457
  28. Kim, S. K., Kim, H. J., Choi, S. E., Park, K. H., Choi, H. K. and Lee, M. W. (2008) Anti-oxidative and inhibitory activities on nitric oxide(NO) and prostaglandin E2(COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg Arch. Pharm. Res. 31: 424-428.
  29. Rho, H. S., Ghimeray, A. K., Yoo, D. S., Ahn, S. M., Kwon, S. S., Lee, K. H., Cho, D. H. and Cho, J. Y. (2011) Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules 16: 3338-3344. https://doi.org/10.3390/molecules16043338
  30. Mao, Y. W., Tseng, H. W., Liang, W. L., Chen, I. S., Chen, S. T. and Lee, M. H. (2011) Anti-inflammatory and free radical scavenging activities of the constituents isolated from Machilus zuihoensis. Molecules 16: 9451-9466. https://doi.org/10.3390/molecules16119451
  31. Kim, S. J. and Um, J. Y. (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-${\kappa}B$ activation in mouse peritoneal macrophages. Am. J. Chin. Med. 39: 171-181. https://doi.org/10.1142/S0192415X11008737