DOI QR코드

DOI QR Code

Structural Safety Assessment of a Concrete-filled Base Frame Supporting a Motor for Centrifugal Compressor Drives

원심식 압축기 구동용 모터 베이스 프레임의 콘크리트 타설에 따른 구조안전성 평가

  • Kim, Min-Jin (Fluid Machinery Technology & Research Center, DAEJOO MACHINERY CO., LTD.) ;
  • Lee, Jae-Hoon (Fluid Machinery Technology & Research Center, DAEJOO MACHINERY CO., LTD.) ;
  • Han, Jeong-Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
  • 김민진 ((주)대주기계 유체기계기술연구소) ;
  • 이재훈 ((주)대주기계 유체기계기술연구소) ;
  • 한정삼 (안동대학교 기계설계공학과)
  • Received : 2015.07.22
  • Accepted : 2015.11.18
  • Published : 2016.02.28

Abstract

In this paper, we perform structural analysis for a base frame which is used to support a motor for large centrifugal compressor drives and a safety assessment according to the concrete placement. First, the structural analysis about four loading conditions for the motor base frame was conducted and the structural safety was evaluated through both the maximum distortion energy theory and Mohr-Coulomb theory. It was possible to perform a more reasonable safety evaluation against local stresses occurring at the discontinuous portion of the fragile structural members by applying the safety assessment through ASME VIII Div. 2. In addition, the motor base frames with and without the internal concrete placement were quantitatively compared by the structural analysis and safety evaluation using ASME code and it was found to improve the structural integrity due to the concrete placement.

본 논문에서는 원심식 대형 압축기 구동용 모터 베이스 프레임의 구조해석 및 콘크리트 타설에 따른 구조안전성 평가를 수행하였다. 먼저 모터 베이스 프레임에 적용되는 네 가지 하중조건에 따른 구조해석을 진행하고 최대 비틀림 에너지 이론 및 Mohr-Coulomb 이론을 통하여 구조안전성을 평가하였다. 구조해석 결과에서 취약한 구조안전성을 나타낸 연결부 등의 불연속적인 부분에서 발생하는 국부응력에 대하여 ASME VIII Div. 2에 따른 구조안전성 평가를 적용함으로써 좀 더 합리적으로 구조안전성 평가를 수행할 수 있었다. 또한, 모터 베이스 프레임 내부에 콘크리트 타설 및 미타설에 따른 구조해석 및 ASME 구조안전성 평가를 통하여 모터 베이스 프레임의 구조안전성을 정량적으로 비교하여 콘크리트 타설로 인한 구조 안전성의 향상을 확인하였다.

Keywords

References

  1. American Petroleum Institue (2007) Reciprocating Compressors for Petroleum, Chemical, and Gas Industry Servies, ANSI/API Standard 618-2008, 5th Edition, Washington.
  2. ANSYS, Inc. (2015) ANSYS Mechanical APDL Theory Reference, ANSYS Release 16.1, Canonsburg, USA.
  3. ASME (2013) 2013 ASME Boiler & Pressure Vessel Code, Rules for Construction of Pressure Vessels, Section VIII, Division 2., ASME, New York.
  4. Kim, H.G. (2006) Shape Optimization for the Light Weight of Cooling Tower Support Part, Proceeding of Korean Society Mechanical Engineers, 66, pp.55-60.
  5. Kim, H.T. (2011) Seismic and Structure Analysis on a Construction Temporary Rack Paddle of nuclear Power Plant, Proc. Korean Soc. Mech. Eng., 35, pp.1265-1271.
  6. Kang, H.S. (2014) Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis, Proc. Korean Soc. Mech. Eng., 38, pp.547-556. https://doi.org/10.3795/KSME-B.2014.38.6.547
  7. Kim, J.Y. (2011) Mechanical Performance Evaluation of a Top End Piece for Dual Cooled Fuels, Proc. Korean Soc. Mech. Eng., 35, pp.417-424.
  8. Kim, T.W. (2002) Analysis of Structural Design Criteria of Pressure Vessels Based on ASME Section VIII, Proc. Korean Soc. Mech. Eng., pp.98-107.
  9. Kishor, D.J. (2012) Design and Standardization of Base Frame & ANT Vibration Mounts for Balanced Opposed Piston Air Compressor, Int. J. Appl. Res. Mech. Eng., 2, pp.2231-5950.
  10. Sowinski, J.C. (2013) ASME Section VIII - Division 2 Example Problem Manual, PTB-3-2013, ASME.