DOI QR코드

DOI QR Code

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins

유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석

  • Cho, Jin-Rae (Department of Naval Architecture and Ocean Engineering, Hongik University) ;
  • Jeong, Ki-Yong (Graduate School of Mechanical Engineering, Pusan National University)
  • 조진래 (홍익대학교 조선해양공학과) ;
  • 정기용 (부산대학교 대학원 기계공학부)
  • Received : 2015.10.01
  • Accepted : 2015.12.01
  • Published : 2016.02.28

Abstract

This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

본 연구는 2.5MW급 풍력발전기용 기어박스의 동특성 분석에 관한 것으로서, 유연핀(flexible pin) 채용에 따른 유성기어축의 미스얼라인먼트(misalignment) 개선여부와 충격하중에 따른 기어박스의 동응답 특성을 유한요소해석을 통해 고찰하였다. 내부의 복잡한 기어시스템의 하중전달을 정확하게 그리고 효과적으로 반영하기 위해 치접촉을 등가 치강성계수를 갖는 스프링요소와 물림률을 이용하여 모델링하였다. 기어의 등가 치강성계수는 기어치에 대한 변형해석을 통해 계산하였으며, 동특성 분석을 위해 기어박스 입력단에 충격 토오크를 부과하였다. 수치실험을 통해 등가 치강성모델의 타당성을 검증하였으며, 양단 그리고 일단 고정축과의 상대 비교를 통해 유연핀 적용에 따른 유성기어축의 미스얼라인먼트 개선여부를 확인할 수 있었다.

Keywords

References

  1. Jeong, K.Y., Lee, D.Y., Choi, E.H., Cho, J.R., Lim, O.K. (2012) Optimum Shape Design of Gearbox Housing for 5MW Wind Turbine, J. Comput. Struct. Eng. Inst. Korea, 25(3), pp.237-243. https://doi.org/10.7734/COSEIK.2012.25.3.237
  2. American Gear Manufacturers Association (2003) American National Standard for Design and Specification of Gearboxs for Wind Turbines, Paper No. ANSI/AGMA/AWEA 6006-103.
  3. Barone, S., Borgianni, L., Forte, P. (2004) Evaluation of the Effect of Misalignment and Profile Modification in Face Gear Drive by a Finite Element Meshing Simulation, J. Mech. Design, ASME Trans., 126(5), pp.916-924. https://doi.org/10.1115/1.1767818
  4. Cho, J.R., Jeong, K.Y., Park, M.H., Shin, D.S., Lim, O.K., Park, N.G. (2013) Finite Element Structural Analysis of Wind Turbine Gearbox Considering Tooth Contact of Internal Gear System, J. Mech. Sci. Technol., 27(7), pp.2053-2059. https://doi.org/10.1007/s12206-013-0521-0
  5. Cho, J.R., Lee, H.W. (2014) Calculation of Stress Intensity Factors in 2-D Linear Fracture Mechanics by Petrov-Galerkin Natural Element Method, Int. J. Numer. Methods Eng., 98, pp.819-839. https://doi.org/10.1002/nme.4666
  6. Cho, J.R., Jeong, K.Y., Park, M.H., Park, N.G. (2015) Dynamic Response Analysis of Wind Turbine Gearbox Using Simplified Local Tooth Stiffness of Internal Gear System, Computational and Nonlinear Dynamics, ASME Trans., 10, 041001-1-9. https://doi.org/10.1115/1.4026934
  7. MIDAS IT (2010) Nastran FX on-line manual.
  8. Nejad, Y.G., Xing, Y., Guo, Y., Keller, J., Gao, Z., Moan, T. (2015) Effects of Floating Sun Gear in a Wind Turbine's Planetary Gearbox with Geometrical Imperfections, Wind Energy, 18(12), pp.2105-2120. https://doi.org/10.1002/we.1808
  9. Ozguven, H.N., Housner, D.R. (1988) Mathematical models used in gear dynamics-a review, J. Sound & Vib., 121(3), pp.383-411. https://doi.org/10.1016/S0022-460X(88)80365-1
  10. Walker, J.F., Jenkins, N. (1997) Wind Energy Technology, Wiley, New York.
  11. Zhu, C.C., Xu, X.Y., Lim, T.C., Du, X.S., Liu, M.Y. (2012) Effect of Flexible Pin on the Dynamic Behavior of Wind Turbine Planetary Gear Drives. Proc IMech Part C: J. Mech. Eng. Sci., 227(1), pp.74-86.