DOI QR코드

DOI QR Code

A Suggestion of Simplified Load Formula for Blast Analysis

폭발해석을 위한 간략 폭발하중 제안식

  • Jeon, Doo-Jin (Department of Architectural Engineering, Inha Univ.) ;
  • Han, Sang-Eul (Department of Architectural Engineering, Inha Univ.)
  • Received : 2015.10.09
  • Accepted : 2015.12.08
  • Published : 2016.02.28

Abstract

In this paper, a pressure-time history curve of blast load and Conwep model are presented, and a simplified blast load formula is suggested. Generally, a blast load are applied as a pressure-time history curve, and it is calculated by blast load formula such as Conwep model. The Conwep model which is used in most of the blast analysis is quiet difficult to calculate because of its complex process. Therefore, a simplified formula is proposed to calculate blast load by simple rational expressions and to make a simplified pressure-time history curve. In this process, a curve fitting method was used to find the simple rational expressions. The calculation results of the simplified formula have an error of less than 1% in comparison with the Conwep model. And, blast analyses using finite elements method are accomplished with the Conwep model and simplified formula for verification.

본 논문에서는 폭발해석에서 주로 사용되는 폭발하중의 압력-시간 이력곡선과 폭발하중 산정식인 Conwep 모델을 소개하고, 이를 더욱 간편하게 계산할 수 있는 간략 폭발하중 산정식을 제안한다. 폭발해석에서 폭발하중은 일반적으로 압력-시간 이력곡선의 형태로 적용되며, 그에 대한 주요 값들은 폭발하중 산정식에 의해 계산된다. 대부분의 폭발해석에서 사용되는 폭발하중 산정식인 Conwep 모델은 환산거리(scaled distance)를 핵심변수로 하여 계산되는데, 그 계산 과정이 매우 복잡한 단점이 있다. 따라서 본 논문에서는 환산거리를 변수로 갖는 간략한 유리식을 사용하여 주요 값들을 계산하고, 단순화된 압력-시간 이력곡선으로 폭발하중을 산정할 수 있도록 제안하였다. 간략식을 찾는 과정에서 Conwep 모델의 계산 결과를 바탕으로 곡선 적합(curve fitting) 방식이 사용되었으며, 제안된 간략식에 의한 주요 값의 계산 결과는 Conwep 모델과 비교하여 1% 미만의 오차를 갖는다. 또한, 유한요소를 이용한 폭발해석에 적용하였으며 Conwep 모델을 적용한 결과와 비교를 통해 검증하였다.

Keywords

References

  1. Bounds, W.L. (2010) Design of Blast- Resistant Buildings in Petrochemical Facilities, ASCE, American Society of Civil Engineers, Virgina.
  2. Carriere, M., Heffernan, P.J., Wight, R.G., Braimah, A. (2009) Behaviour of Steel Reinforced Polymer (SRP) Strengthened RC Members under Blast Load, Can. J. Civil Eng., 36, pp.1356-1365. https://doi.org/10.1139/L09-053
  3. Department of the Army (1986) Fundamentals of Protective Design for Conventional Weapons, TM 5-855-1, Headquarters, Department of the Army.
  4. Kim, H.S., Choi, H.B. (2015) Damage Assessment of Neinforced Concrete Column under Combined Effect of Axial Load and Blast Load by Using P-M Interaction Diagram, J. Arch. Inst. Korea, Struct. & Constr. Sect., 27(10), pp.47-54.
  5. Kim, H.S., Lee, J.Y. (2011) An Evaluation of Blast Resistance Performance of RC Columns by Using P-M Interation Diagram, J. Arch. Inst. Korea, Struct. & Constr. Sect., 31(4), pp.13-20.
  6. Kim, H.S., Park, J.P. (2010) An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section, J. Comput.l Struct. Eng. Inst. Korea, 23(4), pp.387-394.
  7. Lee, K.K. (2010) Evaluation of Residual Capacity of Steel Compressive Members Under Blast Load, J. Arch. Inst. Korea, Struct. & Constr. Sect., 26(10), pp.37-44.
  8. Lee, K.K., Kim, T.J., Kim, E.S., Kim, J.K. (2007) Behavior of Steel Columns Subjected to Blast Loads, J. Arch. Inst. Korea, Struct. & Constr. Sect., 23(7), pp.37-44.
  9. Livermore Software Technology Corporation (LSTC) (2007) LS-DYNA Keyword User's Manual, version 971, Livermore Software Technology Corporation, Livermore, CA.
  10. Nystrom, U., Gylltoft, K. (2009) Numerical Studies of the Combined Effects of Blast and Fragment Loading, Int. J. Impact Eng., 36, pp.995-1005. https://doi.org/10.1016/j.ijimpeng.2009.02.008
  11. Randers-Pehrson, G., Bannister, K. (1997) Airblast Loading Model for DYNA2D and DYNA3D, ARL-TR-1310, Army Research Laboratory, Aberdeen Proving Ground, MD.
  12. RIST (2012) Protection of Buildings Against Explosions, Goomibook, Seoul, pp.44-64.

Cited by

  1. Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation vol.31, pp.5, 2018, https://doi.org/10.7734/COSEIK.2018.31.5.235